Yun Wang, Zhifeng Xiao, Yanwei Wu, Anthony G. Stephan, J. M. Siegers
{"title":"Partial sensing coverage and deployment efficiency in wireless directional sensor networks","authors":"Yun Wang, Zhifeng Xiao, Yanwei Wu, Anthony G. Stephan, J. M. Siegers","doi":"10.1109/WTS.2014.6835029","DOIUrl":null,"url":null,"abstract":"Unlike most existing works that focus on a conventional omni-directional sensor network, we investigate the sensing coverage problem in a directional sensor network through mathematically modeling, analysis, and computer-based simulation evaluation. Research results show: 1) A factor of (2π/θ) more sensors will be required to provide the same sensing coverage in a θ(θ <; 2π)-directional sensor network with respect to its counterpart omni-directional sensor network; 2) Employing application-tolerable partial sensing coverage is of significant importance for directional sensor network implementation in practice, as a noticeable fraction of sensors can be saved; For example, 50% and 66.67% sensors can be saved for 90% sensing coverage as compared to 99% and 99.9% sensing coverage respectively under the same network settings; 3) The node saving rate of employing partial sensing coverage α(α <; 1) with respect to full sensing coverage f(f ≈1), derived as ηα = ln(1-α)-ln(1-f)/ln(1-f), is solely determined by the sensing coverage requirement in an application and is independent of sensor features. Simulation results validate the modeling, derivation, and analysis.","PeriodicalId":199195,"journal":{"name":"2014 Wireless Telecommunications Symposium","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Wireless Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WTS.2014.6835029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Unlike most existing works that focus on a conventional omni-directional sensor network, we investigate the sensing coverage problem in a directional sensor network through mathematically modeling, analysis, and computer-based simulation evaluation. Research results show: 1) A factor of (2π/θ) more sensors will be required to provide the same sensing coverage in a θ(θ <; 2π)-directional sensor network with respect to its counterpart omni-directional sensor network; 2) Employing application-tolerable partial sensing coverage is of significant importance for directional sensor network implementation in practice, as a noticeable fraction of sensors can be saved; For example, 50% and 66.67% sensors can be saved for 90% sensing coverage as compared to 99% and 99.9% sensing coverage respectively under the same network settings; 3) The node saving rate of employing partial sensing coverage α(α <; 1) with respect to full sensing coverage f(f ≈1), derived as ηα = ln(1-α)-ln(1-f)/ln(1-f), is solely determined by the sensing coverage requirement in an application and is independent of sensor features. Simulation results validate the modeling, derivation, and analysis.