Jeffreys' prior yields the asymptotic minimax redundancy

B. S. Clarke, A. Barron
{"title":"Jeffreys' prior yields the asymptotic minimax redundancy","authors":"B. S. Clarke, A. Barron","doi":"10.1109/WITS.1994.513856","DOIUrl":null,"url":null,"abstract":"We determine the asymptotic minimax redundancy of universal data compression in a parametric setting and show that it corresponds to the use of Jeffreys prior. Statistically, this formulation of the coding problem can be interpreted in a prior selection context and in an estimation context.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We determine the asymptotic minimax redundancy of universal data compression in a parametric setting and show that it corresponds to the use of Jeffreys prior. Statistically, this formulation of the coding problem can be interpreted in a prior selection context and in an estimation context.
Jeffreys先验得到渐近极大极小冗余
我们确定了在参数设置下通用数据压缩的渐近极大极小冗余,并证明了它对应于杰弗里斯先验的使用。从统计学上讲,这个编码问题的公式可以在先验选择上下文和估计上下文中解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信