Nominal and Robust Loop Shaping

A. Holohan, M. Safonov
{"title":"Nominal and Robust Loop Shaping","authors":"A. Holohan, M. Safonov","doi":"10.23919/ACC.1992.4792212","DOIUrl":null,"url":null,"abstract":"In this paper, classical frequency-response multivariable comnpensator design is studied. This problem consists of chosing a linear controller which gives the sensitivity and complementary sensitivity functions desirable properties. The problem is given two formulations as optimal multivariable stability margin (km) synthesis (or ¿-synthesis, robustness margin synthesis) problems, thereby establishing the consistency with and unification of the present problem with modern robust control theory. These formulations are termed the nominal and the robust loop shaping problems. A quantitative assessment of how well the standard H¿-theory performs in this context is given for the multivariable case, using new bounds. The primary conclusion is that the existing H¿-theory does surprisingly well in handling multivariable problems with classical frequency response specifications.","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1992.4792212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, classical frequency-response multivariable comnpensator design is studied. This problem consists of chosing a linear controller which gives the sensitivity and complementary sensitivity functions desirable properties. The problem is given two formulations as optimal multivariable stability margin (km) synthesis (or ¿-synthesis, robustness margin synthesis) problems, thereby establishing the consistency with and unification of the present problem with modern robust control theory. These formulations are termed the nominal and the robust loop shaping problems. A quantitative assessment of how well the standard H¿-theory performs in this context is given for the multivariable case, using new bounds. The primary conclusion is that the existing H¿-theory does surprisingly well in handling multivariable problems with classical frequency response specifications.
标称和鲁棒回路成形
本文研究了经典频率响应多变量补偿器的设计。该问题包括选择一个线性控制器,使灵敏度和互补灵敏度函数具有理想的性质。给出了最优多变量稳定性裕度(km)综合(或¿-综合,鲁棒裕度综合)问题的两种表述,从而建立了该问题与现代鲁棒控制理论的一致性和统一性。这些公式被称为标称和鲁棒回路成形问题。对标准H¿-理论在这种情况下的表现进行了定量评估,使用新的界限给出了多变量情况。主要结论是,现有的H¿-理论在处理具有经典频率响应规范的多变量问题方面表现得非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信