Optimizing lineage information in genetic algorithms for producing superior models

G. Boetticher, J. Rudisill
{"title":"Optimizing lineage information in genetic algorithms for producing superior models","authors":"G. Boetticher, J. Rudisill","doi":"10.1109/IRI.2008.4583049","DOIUrl":null,"url":null,"abstract":"A lot of research in the area of genetic algorithms (GA) is applied, but little research examines the impact of lineage information in optimizing a GA. Normally, researchers consider primarily elitism, an approach which carries only a very small fixed subset of the population to the next generation, as a lineage strategy. This paper investigates several different lineage percentages (what percent of the population to carry forward) to determine an ideal percentage or range from improving the accuracy of a GA. Several experiments are performed, and all results are statistically validated.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2008.4583049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A lot of research in the area of genetic algorithms (GA) is applied, but little research examines the impact of lineage information in optimizing a GA. Normally, researchers consider primarily elitism, an approach which carries only a very small fixed subset of the population to the next generation, as a lineage strategy. This paper investigates several different lineage percentages (what percent of the population to carry forward) to determine an ideal percentage or range from improving the accuracy of a GA. Several experiments are performed, and all results are statistically validated.
优化遗传算法中的谱系信息以产生优越的模型
在遗传算法领域有大量的研究,但很少有研究考察谱系信息对遗传算法优化的影响。通常,研究人员主要认为精英主义是一种谱系策略,这种方法只将人口中非常小的固定子集传递给下一代。本文研究了几种不同的谱系百分比(要继承的人口百分比),以确定一个理想的百分比或范围,以提高遗传算法的准确性。进行了多次实验,所有结果都得到了统计验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信