An Expert-Model & Machine Learning Hybrid Approach to Predicting Human-Agent Negotiation Outcomes

Johnathan Mell, Markus Beissinger, J. Gratch
{"title":"An Expert-Model & Machine Learning Hybrid Approach to Predicting Human-Agent Negotiation Outcomes","authors":"Johnathan Mell, Markus Beissinger, J. Gratch","doi":"10.1145/3308532.3329433","DOIUrl":null,"url":null,"abstract":"We present the results of a machine-learning approach to the analysis of several human-agent negotiation studies. By combining expert knowledge of negotiating behavior compiled over a series of empirical studies with neural networks, we show that a hybrid approach to parameter selection yields promise for designing -more effective and socially intelligent agents. Specifically, we show that a deep feedforward neural network using a theory-driven three-parameter model can be effective in predicting negotiation outcomes. Furthermore, it outperforms other expert-designed models that use more parameters, as well as those using other, more limited techniques (such as linear regression models or boosted decision trees). We anticipate these results will have impact for those seeking to combine extensive domain knowledge with more automated approaches in human-computer negotiation.","PeriodicalId":112642,"journal":{"name":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308532.3329433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the results of a machine-learning approach to the analysis of several human-agent negotiation studies. By combining expert knowledge of negotiating behavior compiled over a series of empirical studies with neural networks, we show that a hybrid approach to parameter selection yields promise for designing -more effective and socially intelligent agents. Specifically, we show that a deep feedforward neural network using a theory-driven three-parameter model can be effective in predicting negotiation outcomes. Furthermore, it outperforms other expert-designed models that use more parameters, as well as those using other, more limited techniques (such as linear regression models or boosted decision trees). We anticipate these results will have impact for those seeking to combine extensive domain knowledge with more automated approaches in human-computer negotiation.
专家-模型和机器学习混合方法预测人类-代理谈判结果
我们提出了一种机器学习方法来分析几个人类代理谈判研究的结果。通过将协商行为的专家知识与神经网络的一系列经验研究相结合,我们表明,参数选择的混合方法有望设计出更有效和社会智能的代理。具体来说,我们证明了使用理论驱动的三参数模型的深度前馈神经网络可以有效地预测谈判结果。此外,它优于其他使用更多参数的专家设计的模型,以及那些使用其他更有限的技术(如线性回归模型或增强决策树)的模型。我们预计这些结果将对那些寻求将广泛的领域知识与人机谈判中更自动化的方法相结合的人产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信