Effect of finite system size on the thermodynamics of hot and magnetized hadron resonance gas

D. Atta, Snigdha Ghosh
{"title":"Effect of finite system size on the thermodynamics of hot and magnetized hadron resonance gas","authors":"D. Atta, Snigdha Ghosh","doi":"10.22323/1.380.0236","DOIUrl":null,"url":null,"abstract":"The thermodynamic properties of a non-interacting ideal Hadron Resonance Gas (HRG) of finite volume have been studied in the presence of an external magnetic field. The inclusion of background magnetic field in the calculation of thermodynamic potential is done by the modification of the dispersion relations of charged hadrons in terms of Landau quantization. The generalized Matsubara prescription has been employed to take into account the finite size effects in which a periodic (anti-periodic) boundary conditions is considered for the mesons (baryons). We find significant effects of the magnetic field as well as system size on the temperature dependence of energy density, longitudinal and transverse pressure especially in low temperature regions.","PeriodicalId":135659,"journal":{"name":"Proceedings of Particles and Nuclei International Conference 2021 — PoS(PANIC2021)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Particles and Nuclei International Conference 2021 — PoS(PANIC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.380.0236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermodynamic properties of a non-interacting ideal Hadron Resonance Gas (HRG) of finite volume have been studied in the presence of an external magnetic field. The inclusion of background magnetic field in the calculation of thermodynamic potential is done by the modification of the dispersion relations of charged hadrons in terms of Landau quantization. The generalized Matsubara prescription has been employed to take into account the finite size effects in which a periodic (anti-periodic) boundary conditions is considered for the mesons (baryons). We find significant effects of the magnetic field as well as system size on the temperature dependence of energy density, longitudinal and transverse pressure especially in low temperature regions.
有限系统尺寸对热磁化强子共振气体热力学的影响
研究了外加磁场作用下有限体积非相互作用理想强子共振气体的热力学性质。在热力学势的计算中加入背景磁场是通过对带电强子色散关系的朗道量子化修正来实现的。在考虑介子(重子)的周期(反周期)边界条件时,采用了广义Matsubara公式来考虑有限尺寸效应。我们发现磁场和系统尺寸对能量密度、纵向和横向压力的温度依赖性有显著影响,特别是在低温区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信