A Recommendation System Framework to Generalize AutoRec and Neural Collaborative Filtering

Ramin Raziperchikolaei, Young-joo Chung
{"title":"A Recommendation System Framework to Generalize AutoRec and Neural Collaborative Filtering","authors":"Ramin Raziperchikolaei, Young-joo Chung","doi":"10.1109/ICDMW58026.2022.00151","DOIUrl":null,"url":null,"abstract":"AutoRec and neural collaborative filtering (NCF) are two widely used neural network-based frameworks in the recommendation system literature. In this paper, we show that these two apparently very different frameworks have a lot in common. We propose a general neural network-based frame-work, which gives us flexibility in choosing elements in the input sources, prediction functions, etc. Then, we show that AutoRec and NCF are special forms of our generalized framework. In our experimental results, first, we compare different variants of NCF and Autorec. Then, we indicate that it is necessary to use our general framework since there is no specific structure that performs well in all datasets. Finally, we show that by choosing the right elements, our framework outperforms the state-of-the-art methods with complicated structures.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AutoRec and neural collaborative filtering (NCF) are two widely used neural network-based frameworks in the recommendation system literature. In this paper, we show that these two apparently very different frameworks have a lot in common. We propose a general neural network-based frame-work, which gives us flexibility in choosing elements in the input sources, prediction functions, etc. Then, we show that AutoRec and NCF are special forms of our generalized framework. In our experimental results, first, we compare different variants of NCF and Autorec. Then, we indicate that it is necessary to use our general framework since there is no specific structure that performs well in all datasets. Finally, we show that by choosing the right elements, our framework outperforms the state-of-the-art methods with complicated structures.
一种推广自动识别和神经协同过滤的推荐系统框架
AutoRec和神经协同过滤(NCF)是推荐系统文献中应用最广泛的两种基于神经网络的框架。在本文中,我们展示了这两个明显不同的框架有很多共同点。我们提出了一个通用的基于神经网络的框架,它使我们能够灵活地选择输入源中的元素,预测函数等。然后,我们证明了AutoRec和NCF是我们的广义框架的特殊形式。在我们的实验结果中,首先,我们比较了NCF和Autorec的不同变体。然后,我们指出有必要使用我们的通用框架,因为没有在所有数据集中表现良好的特定结构。最后,我们表明,通过选择正确的元素,我们的框架优于具有复杂结构的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信