Performance characterization of artificial neural networks for contact tracking

D. J. Ferkinhoff, C. T. Nguyen, S. Hammel, K. Gong
{"title":"Performance characterization of artificial neural networks for contact tracking","authors":"D. J. Ferkinhoff, C. T. Nguyen, S. Hammel, K. Gong","doi":"10.1109/OCEANS.1993.326104","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANN's) can be exploited in a variety of information processing applications because they offer simplicity of implementation, possess inherent parallel processing characteristics and are nonlinear and less reliant on modeling of the real process. The paper is concerned with the problem of determining the performance of ANN's trained to provide estimates of contact state variables given a time series of measurements. A method is presented for determining ANN performance. Specifically, performance is shown to be intrinsically related to system observability. A performance analysis of ANN's under various observability conditions is presented along with a methodology for selecting the appropriate ANN-generated solution with a system architecture comprised of multiple clusters of ANN's.<<ETX>>","PeriodicalId":130255,"journal":{"name":"Proceedings of OCEANS '93","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of OCEANS '93","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.1993.326104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Artificial neural networks (ANN's) can be exploited in a variety of information processing applications because they offer simplicity of implementation, possess inherent parallel processing characteristics and are nonlinear and less reliant on modeling of the real process. The paper is concerned with the problem of determining the performance of ANN's trained to provide estimates of contact state variables given a time series of measurements. A method is presented for determining ANN performance. Specifically, performance is shown to be intrinsically related to system observability. A performance analysis of ANN's under various observability conditions is presented along with a methodology for selecting the appropriate ANN-generated solution with a system architecture comprised of multiple clusters of ANN's.<>
人工神经网络在接触跟踪中的性能表征
人工神经网络(ANN’s)可以在各种信息处理应用中利用,因为它们提供了简单的实现,具有固有的并行处理特性,并且是非线性的,对真实过程的建模依赖较少。本文关注的问题是确定人工神经网络的性能,以提供给定时间序列测量的接触状态变量的估计。提出了一种确定人工神经网络性能的方法。具体来说,性能与系统的可观察性有着内在的联系。在各种可观测性条件下,对人工神经网络的性能进行了分析,并提出了一种方法,用于选择由多个人工神经网络集群组成的系统架构中适当的人工神经网络生成的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信