2. An adaptive random bit multilevel algorithm for SDEs

M. Giles, M. Hefter, Lukas Mayer, K. Ritter
{"title":"2. An adaptive random bit multilevel algorithm for SDEs","authors":"M. Giles, M. Hefter, Lukas Mayer, K. Ritter","doi":"10.1515/9783110635461-002","DOIUrl":null,"url":null,"abstract":"We study the approximation of expectations $\\operatorname{E}(f(X))$ for solutions $X$ of stochastic differential equations and functionals $f$ on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the L\\'evy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.","PeriodicalId":443134,"journal":{"name":"Multivariate Algorithms and Information-Based Complexity","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Algorithms and Information-Based Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110635461-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the approximation of expectations $\operatorname{E}(f(X))$ for solutions $X$ of stochastic differential equations and functionals $f$ on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the L\'evy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.
2. 一种用于SDEs的自适应随机位多电平算法
本文研究了随机微分方程解$X$的期望值$\operatorname{E}(f(X))$和函数解$f$在路径空间上的期望值$\operatorname{E}(f(X))$的逼近问题,该算法只使用随机位而不使用随机数。基于欧拉格式、布朗运动的L\ evy-Ciesielski表示和标准正态分布的渐近最优随机位逼近,构造了一种自适应随机位多电平算法。在几何布朗运动、Ornstein-Uhlenbeck过程和Cox-Ingersoll-Ross过程中,将该算法与自适应经典多层欧拉算法进行了数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信