Mining Contextual Item Similarity without Concept Hierarchy

Mohammad Fahim Arefin, Chowdhury Farhan Ahmed, Redwan Ahmed Rizvee, C. Leung, Longbing Cao
{"title":"Mining Contextual Item Similarity without Concept Hierarchy","authors":"Mohammad Fahim Arefin, Chowdhury Farhan Ahmed, Redwan Ahmed Rizvee, C. Leung, Longbing Cao","doi":"10.1109/IMCOM53663.2022.9721788","DOIUrl":null,"url":null,"abstract":"In the modern era, data is precious. Therefore, a huge amount of data is being generated every moment and data mining extracts insight from this data. Item similarity mining is a special domain of data mining that helps discover inherent and important characteristics of a dataset. It is a popular research problem with application in numerous domains. In this work, we propose a novel, symmetric, null-invariant measure of similarity that can evaluate contextual similarity between items, without any additional metadata. We also propose an optimal algorithm for calculating this measure. Moreover, as the optimal algorithm has comparatively high runtime complexity, we propose a heuristic algorithm which generates an approximate result without sacrificing much accuracy. This similarity can be used for mining localized associations and discovering object relationships in large datasets. The results obtained using the proposed measure in six real-life datasets confirm the measure’s effectiveness and versatility in data of varying nature.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM53663.2022.9721788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the modern era, data is precious. Therefore, a huge amount of data is being generated every moment and data mining extracts insight from this data. Item similarity mining is a special domain of data mining that helps discover inherent and important characteristics of a dataset. It is a popular research problem with application in numerous domains. In this work, we propose a novel, symmetric, null-invariant measure of similarity that can evaluate contextual similarity between items, without any additional metadata. We also propose an optimal algorithm for calculating this measure. Moreover, as the optimal algorithm has comparatively high runtime complexity, we propose a heuristic algorithm which generates an approximate result without sacrificing much accuracy. This similarity can be used for mining localized associations and discovering object relationships in large datasets. The results obtained using the proposed measure in six real-life datasets confirm the measure’s effectiveness and versatility in data of varying nature.
挖掘没有概念层次结构的上下文项目相似性
在现代,数据是宝贵的。因此,每时每刻都在产生大量的数据,数据挖掘从这些数据中提取洞察力。项目相似性挖掘是数据挖掘的一个特殊领域,它有助于发现数据集的内在和重要特征。这是一个热门的研究问题,在许多领域都有应用。在这项工作中,我们提出了一种新颖的、对称的、零不变的相似性度量,可以评估项目之间的上下文相似性,而不需要任何额外的元数据。我们还提出了一种计算该度量的最优算法。此外,由于最优算法具有较高的运行复杂度,我们提出了一种启发式算法,在不牺牲太多精度的情况下生成近似结果。这种相似性可以用于挖掘局部关联和发现大型数据集中的对象关系。在六个实际数据集中使用所提出的测量方法获得的结果证实了该方法在不同性质数据中的有效性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信