AI4EO Hyperview: A Spectralnet3d and Rnnplus Approach for Sustainable Soil Parameter Estimation on Hyperspectral Image Data

Claudius Zelenka, Andreas Lohrer, Mirjam Bayer, Peer Kröger
{"title":"AI4EO Hyperview: A Spectralnet3d and Rnnplus Approach for Sustainable Soil Parameter Estimation on Hyperspectral Image Data","authors":"Claudius Zelenka, Andreas Lohrer, Mirjam Bayer, Peer Kröger","doi":"10.1109/ICIP46576.2022.9897889","DOIUrl":null,"url":null,"abstract":"The goal of the #Hyperview challenge is to use Hyperspectral Imaging (HSI) to predict the soil parameters potassium (K), phosphorus pentoxide (P2O5), magnesium (Mg) and the pH value. These are relevant parameters to determine the need of fertilization in agriculture. With this knowledge, fertilizers can be applied in a targeted way rather than in a prophylactic way which is the current procedure of choice.In this context we introduce two different approaches to solve this regression task based on 3D CNNs with Huber loss regression (SpectralNet3D) and on 1D RNNs. Both methods show distinct advantages with a peak challenge metric score of 0.808 on provided validation data.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the #Hyperview challenge is to use Hyperspectral Imaging (HSI) to predict the soil parameters potassium (K), phosphorus pentoxide (P2O5), magnesium (Mg) and the pH value. These are relevant parameters to determine the need of fertilization in agriculture. With this knowledge, fertilizers can be applied in a targeted way rather than in a prophylactic way which is the current procedure of choice.In this context we introduce two different approaches to solve this regression task based on 3D CNNs with Huber loss regression (SpectralNet3D) and on 1D RNNs. Both methods show distinct advantages with a peak challenge metric score of 0.808 on provided validation data.
AI4EO Hyperview:基于高光谱影像数据的可持续土壤参数估计的Spectralnet3d和rnplus方法
Hyperview挑战的目标是使用高光谱成像(HSI)来预测土壤参数钾(K)、五氧化二磷(P2O5)、镁(Mg)和pH值。这些是决定农业施肥需求的相关参数。有了这些知识,肥料可以有针对性地施用,而不是以预防的方式施用,这是目前选择的程序。在此背景下,我们介绍了两种不同的方法来解决基于Huber损失回归的3D cnn (SpectralNet3D)和一维rnn的回归任务。两种方法都显示出明显的优势,在提供的验证数据上,峰值挑战度量得分为0.808。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信