Ciprian Tomoiaga, Paul Feng, M. Salzmann, PA Jayet
{"title":"Field Typing for Improved Recognition on Heterogeneous Handwritten Forms","authors":"Ciprian Tomoiaga, Paul Feng, M. Salzmann, PA Jayet","doi":"10.1109/ICDAR.2019.00084","DOIUrl":null,"url":null,"abstract":"Offline handwriting recognition has undergone continuous progress over the past decades. However, existing methods are typically benchmarked on free-form text datasets that are biased towards good-quality images and handwriting styles, and homogeneous content. In this paper, we show that state-of-the-art algorithms, employing long short-term memory (LSTM) layers, do not readily generalize to real-world structured documents, such as forms, due to their highly heterogeneous and out-of-vocabulary content, and to the inherent ambiguities of this content. To address this, we propose to leverage the content type within an LSTM-based architecture. Furthermore, we introduce a procedure to generate synthetic data to train this architecture without requiring expensive manual annotations. We demonstrate the effectiveness of our approach at transcribing text on a challenging, real-world dataset of European Accident Statements.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Offline handwriting recognition has undergone continuous progress over the past decades. However, existing methods are typically benchmarked on free-form text datasets that are biased towards good-quality images and handwriting styles, and homogeneous content. In this paper, we show that state-of-the-art algorithms, employing long short-term memory (LSTM) layers, do not readily generalize to real-world structured documents, such as forms, due to their highly heterogeneous and out-of-vocabulary content, and to the inherent ambiguities of this content. To address this, we propose to leverage the content type within an LSTM-based architecture. Furthermore, we introduce a procedure to generate synthetic data to train this architecture without requiring expensive manual annotations. We demonstrate the effectiveness of our approach at transcribing text on a challenging, real-world dataset of European Accident Statements.