Embedding a logical theory of constructions in Agda

Ana Bove, P. Dybjer, Andrés Sicard-Ramírez
{"title":"Embedding a logical theory of constructions in Agda","authors":"Ana Bove, P. Dybjer, Andrés Sicard-Ramírez","doi":"10.1145/1481848.1481857","DOIUrl":null,"url":null,"abstract":"We propose a new way to reason about general recursive functional programs in the dependently typed programming language Agda, which is based on Martin-Löf's intuitionistic type theory. We show how to embed an external programming logic, Aczel's Logical Theory of Constructions (LTC) inside Agda. To this end we postulate the existence of a domain of untyped functional programs and the conversion rules for these programs. Furthermore, we represent the inductive notions in LTC (intuitionistic predicate logic with equality, and totality predicates) as inductive notions in Agda. To illustrate our approach we specify an LTC-style logic for PCF, and show how to prove the termination and correctness of a general recursive algorithm for computing the greatest common divisor of two numbers.","PeriodicalId":153056,"journal":{"name":"Programming Languages meets Program Verification","volume":"462 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming Languages meets Program Verification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1481848.1481857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a new way to reason about general recursive functional programs in the dependently typed programming language Agda, which is based on Martin-Löf's intuitionistic type theory. We show how to embed an external programming logic, Aczel's Logical Theory of Constructions (LTC) inside Agda. To this end we postulate the existence of a domain of untyped functional programs and the conversion rules for these programs. Furthermore, we represent the inductive notions in LTC (intuitionistic predicate logic with equality, and totality predicates) as inductive notions in Agda. To illustrate our approach we specify an LTC-style logic for PCF, and show how to prove the termination and correctness of a general recursive algorithm for computing the greatest common divisor of two numbers.
在Agda中嵌入结构的逻辑理论
本文基于Martin-Löf的直觉型理论,提出了一种在依赖类型编程语言Agda中对一般递归函数程序进行推理的新方法。我们展示了如何在Agda中嵌入外部编程逻辑,Aczel的逻辑结构理论(LTC)。为此,我们假定存在一个无类型函数程序域,并给出了这些程序的转换规则。进一步,我们将LTC(带相等的直觉谓词逻辑,和总体谓词)中的归纳概念表示为Agda中的归纳概念。为了说明我们的方法,我们为PCF指定了一种ltc风格的逻辑,并展示了如何证明用于计算两个数的最大公约数的一般递归算法的终止性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信