Wireless Power Transfer and Energy Harvesting Using Metamaterials and Metasurfaces

Yi Huang, Jiafeng Zhou, Long Li
{"title":"Wireless Power Transfer and Energy Harvesting Using Metamaterials and Metasurfaces","authors":"Yi Huang, Jiafeng Zhou, Long Li","doi":"10.1109/iWAT54881.2022.9811085","DOIUrl":null,"url":null,"abstract":"In this invited talk/paper, we review and explore the use of metamaterials and metasurfaces for wireless power transfer (WPT) and wireless energy harvesting (WEH) which are two closely related hot topics. The focus is on how to improve the energy conversion efficiency of both systems. It is shown that metamaterials and metasurfaces can indeed achieve a higher RF to DC energy conversion efficiency and operational distance by changing the electromagnetic fields between the transmitter and receiver, and/or making their reception less sensitive to incident wave angle and polarization. They can also be used as either parasitic elements or loading components to improve WEH performance.","PeriodicalId":106416,"journal":{"name":"2022 International Workshop on Antenna Technology (iWAT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iWAT54881.2022.9811085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this invited talk/paper, we review and explore the use of metamaterials and metasurfaces for wireless power transfer (WPT) and wireless energy harvesting (WEH) which are two closely related hot topics. The focus is on how to improve the energy conversion efficiency of both systems. It is shown that metamaterials and metasurfaces can indeed achieve a higher RF to DC energy conversion efficiency and operational distance by changing the electromagnetic fields between the transmitter and receiver, and/or making their reception less sensitive to incident wave angle and polarization. They can also be used as either parasitic elements or loading components to improve WEH performance.
利用超材料和超表面的无线能量传输和能量收集
在这篇特邀演讲/论文中,我们回顾和探讨了超材料和超表面在无线能量传输(WPT)和无线能量收集(WEH)两个密切相关的热点领域中的应用。重点是如何提高两种系统的能量转换效率。结果表明,通过改变发射器和接收器之间的电磁场,以及/或降低其接收对入射波角度和偏振的敏感性,超材料和超表面确实可以实现更高的射频到直流的能量转换效率和工作距离。它们也可以用作寄生元件或加载元件,以提高WEH的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信