{"title":"Loosely time-triggered architectures: improvements and comparisons","authors":"Guillaume Baudart, A. Benveniste, T. Bourke","doi":"10.1109/EMSOFT.2015.7318263","DOIUrl":null,"url":null,"abstract":"Loosely Time-Triggered Architectures (LTTAs) are a proposal for constructing distributed embedded control systems. They build on the quasi-periodic architecture, where computing units execute `almost periodically', by adding a thin layer of middleware that facilitates the implementation of synchronous applications. In this paper, we show how the deployment of a synchronous application on a quasi-periodic architecture can be modeled using a synchronous formalism. Then we detail two protocols, Back-Pressure LTTA, reminiscent of elastic circuits, and Time-Based LTTA, based on waiting. Compared to previous work, we present controller models that can be compiled for execution and a simplified version of the Time-Based protocol. We also compare the LTTA approach with architectures based on clock synchronization.","PeriodicalId":297297,"journal":{"name":"2015 International Conference on Embedded Software (EMSOFT)","volume":"462 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2015.7318263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Loosely Time-Triggered Architectures (LTTAs) are a proposal for constructing distributed embedded control systems. They build on the quasi-periodic architecture, where computing units execute `almost periodically', by adding a thin layer of middleware that facilitates the implementation of synchronous applications. In this paper, we show how the deployment of a synchronous application on a quasi-periodic architecture can be modeled using a synchronous formalism. Then we detail two protocols, Back-Pressure LTTA, reminiscent of elastic circuits, and Time-Based LTTA, based on waiting. Compared to previous work, we present controller models that can be compiled for execution and a simplified version of the Time-Based protocol. We also compare the LTTA approach with architectures based on clock synchronization.