Work-in-Progress: Enhanced Energy-Aware Standby-Sparing Techniques for Fixed-Priority Hard Real-Time Systems

Linwei Niu, Jonathan Musselwhite, Wei Li
{"title":"Work-in-Progress: Enhanced Energy-Aware Standby-Sparing Techniques for Fixed-Priority Hard Real-Time Systems","authors":"Linwei Niu, Jonathan Musselwhite, Wei Li","doi":"10.1109/RTSS.2018.00031","DOIUrl":null,"url":null,"abstract":"For real-time computing systems, energy efficiency and reliability are two primary design concerns. In this research work, we study the problem of enhanced energy-aware standbysparing for fixed-priority (FP) hard real-time systems under reliability requirement. The standby-sparing system adopts a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. In order to keep the energy consumption for such kind of systems under control, we explore enhanced fixed-priority scheduling schemes to minimize the overlapped concurrent executions of the workloads on the primary processor and on the spare processor, enabling energy savings. Moreover, efficient online scheduling techniques are under development to boost the energy savings during runtime while preserving the system reliability.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For real-time computing systems, energy efficiency and reliability are two primary design concerns. In this research work, we study the problem of enhanced energy-aware standbysparing for fixed-priority (FP) hard real-time systems under reliability requirement. The standby-sparing system adopts a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. In order to keep the energy consumption for such kind of systems under control, we explore enhanced fixed-priority scheduling schemes to minimize the overlapped concurrent executions of the workloads on the primary processor and on the spare processor, enabling energy savings. Moreover, efficient online scheduling techniques are under development to boost the energy savings during runtime while preserving the system reliability.
正在进行的工作:用于固定优先级硬实时系统的增强能源感知备用节省技术
对于实时计算系统,能源效率和可靠性是两个主要的设计关注点。本文研究了在可靠性要求下,固定优先级(FP)硬实时系统的增强能量感知备用节省问题。备用备用系统采用一个主处理器和一个备用处理器,提供永久和暂态故障的容错能力。为了控制这类系统的能耗,我们探索了增强的固定优先级调度方案,以最大限度地减少主处理器和备用处理器上工作负载的重叠并发执行,从而实现节能。此外,高效的在线调度技术正在开发中,以提高运行时的能源节约,同时保持系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信