Makram W. Hatoum, R. Darazi, Jean-François Couchot
{"title":"Blind Image Watermarking using Normalized STDM robust against Fixed Gain Attack","authors":"Makram W. Hatoum, R. Darazi, Jean-François Couchot","doi":"10.1109/IMCET.2018.8603038","DOIUrl":null,"url":null,"abstract":"Spread Transform Dither Modulation (STDM), as an extension of Quantization Index Modulation (QIM) is a blind watermarking scheme that achieves high robustness against random noise and re-quantization attacks, with a limitation against the Fixed Gain Attack (FGA). In this paper, we improve the STDM watermarking scheme by making the quantization step size dependent on the watermarked content to resist the FGA attack. Simulations on real images show that our approach achieves strong robustness against the FGA attack, the Additive White Gaussian Noise (AWGN) attack, and the JPEG compression attack while preserving a higher level of transparency.","PeriodicalId":220641,"journal":{"name":"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)","volume":"462 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCET.2018.8603038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Spread Transform Dither Modulation (STDM), as an extension of Quantization Index Modulation (QIM) is a blind watermarking scheme that achieves high robustness against random noise and re-quantization attacks, with a limitation against the Fixed Gain Attack (FGA). In this paper, we improve the STDM watermarking scheme by making the quantization step size dependent on the watermarked content to resist the FGA attack. Simulations on real images show that our approach achieves strong robustness against the FGA attack, the Additive White Gaussian Noise (AWGN) attack, and the JPEG compression attack while preserving a higher level of transparency.