An efficient obstacle avoidance scheme in mobile robot path planning using polynomial neural networks

F. Ahmed, C. Chen
{"title":"An efficient obstacle avoidance scheme in mobile robot path planning using polynomial neural networks","authors":"F. Ahmed, C. Chen","doi":"10.1109/NAECON.1993.290832","DOIUrl":null,"url":null,"abstract":"Application of Polynomial Neural Networks (PNN) in mobile robot path planning with an obstacle avoidance scheme is proposed. Given an environment and a desired goal location (position and orientation), PNN's are built from some selected starting locations to reach this goal. These PNNs comprise the memory of our model. An efficient associative retrieval technique is then applied to make the robot follow a minimal cost polynomial path. In the movement, when it faces an obstacle, the robot uses a contour finding algorithm to get away from the obstacle. The major advantage of using the PNNs is its interpolating capability with a moderate size of data space. Also no preprocessing of the range data is necessary.<<ETX>>","PeriodicalId":183796,"journal":{"name":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1993.290832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Application of Polynomial Neural Networks (PNN) in mobile robot path planning with an obstacle avoidance scheme is proposed. Given an environment and a desired goal location (position and orientation), PNN's are built from some selected starting locations to reach this goal. These PNNs comprise the memory of our model. An efficient associative retrieval technique is then applied to make the robot follow a minimal cost polynomial path. In the movement, when it faces an obstacle, the robot uses a contour finding algorithm to get away from the obstacle. The major advantage of using the PNNs is its interpolating capability with a moderate size of data space. Also no preprocessing of the range data is necessary.<>
基于多项式神经网络的移动机器人路径规划中的高效避障方案
提出了多项式神经网络(PNN)在移动机器人避障路径规划中的应用。给定环境和期望的目标位置(位置和方向),PNN从一些选定的起始位置构建以达到该目标。这些pnn组成了我们模型的内存。然后应用高效的关联检索技术使机器人遵循最小代价多项式路径。在运动过程中,当机器人遇到障碍物时,利用轮廓查找算法避开障碍物。使用pnn的主要优点是它具有中等大小的数据空间的插值能力。也不需要对测距数据进行预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信