Divide and Adapt: Active Domain Adaptation via Customized Learning

Duojun Huang, Jichang Li, Weikai Chen, Jun Steed Huang, Z. Chai, Guanbin Li
{"title":"Divide and Adapt: Active Domain Adaptation via Customized Learning","authors":"Duojun Huang, Jichang Li, Weikai Chen, Jun Steed Huang, Z. Chai, Guanbin Li","doi":"10.1109/CVPR52729.2023.00739","DOIUrl":null,"url":null,"abstract":"Active domain adaptation (ADA) aims to improve the model adaptation performance by incorporating active learning (AL) techniques to label a maximally-informative subset of target samples. Conventional AL methods do not consider the existence of domain shift, and hence, fail to identify the truly valuable samples in the context of domain adaptation. To accommodate active learning and domain adaption, the two naturally different tasks, in a collaborative framework, we advocate that a customized learning strategy for the target data is the key to the success of ADA solutions. We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties. With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples. While sending the informative instances for annotation, DiaNA employs tailored learning strategies for the remaining categories. Furthermore, we propose an informativeness score that unifies the data partitioning criteria. This enables the use of a Gaussian mixture model (GMM) to automatically sample unlabeled data into the proposed four categories. Thanks to the “divide-and-adapt” spirit, DiaNA can handle data with large variations of domain gap. In addition, we show that DiaNA can generalize to different domain adaptation settings, such as unsupervised domain adaptation (UDA), semi-supervised domain adaptation (SSDA), source-free domain adaptation (SFDA), etc.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"461 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Active domain adaptation (ADA) aims to improve the model adaptation performance by incorporating active learning (AL) techniques to label a maximally-informative subset of target samples. Conventional AL methods do not consider the existence of domain shift, and hence, fail to identify the truly valuable samples in the context of domain adaptation. To accommodate active learning and domain adaption, the two naturally different tasks, in a collaborative framework, we advocate that a customized learning strategy for the target data is the key to the success of ADA solutions. We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties. With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples. While sending the informative instances for annotation, DiaNA employs tailored learning strategies for the remaining categories. Furthermore, we propose an informativeness score that unifies the data partitioning criteria. This enables the use of a Gaussian mixture model (GMM) to automatically sample unlabeled data into the proposed four categories. Thanks to the “divide-and-adapt” spirit, DiaNA can handle data with large variations of domain gap. In addition, we show that DiaNA can generalize to different domain adaptation settings, such as unsupervised domain adaptation (UDA), semi-supervised domain adaptation (SSDA), source-free domain adaptation (SFDA), etc.
划分和适应:通过定制学习的主动领域适应
主动域自适应(ADA)旨在通过结合主动学习(AL)技术来标记目标样本中信息量最大的子集,从而提高模型的自适应性能。传统的人工智能方法没有考虑域漂移的存在,因此,在域适应的背景下,无法识别出真正有价值的样本。为了适应主动学习和领域适应这两个自然不同的任务,在协作框架中,我们主张为目标数据定制学习策略是ADA解决方案成功的关键。本文提出了一种新的ADA框架——划分与适应(DiaNA),该框架将目标实例划分为具有分层可转移属性的四类。采用一种新的基于不确定性和域性的数据细分协议,可以准确地识别出最有价值的样本。在发送信息实例进行注释时,DiaNA为其余类别使用定制的学习策略。此外,我们提出了统一数据划分标准的信息性评分。这使得使用高斯混合模型(GMM)能够自动将未标记的数据采样到建议的四个类别中。由于“划分和适应”的精神,DiaNA可以处理领域差距变化很大的数据。此外,我们还证明了DiaNA可以泛化到不同的域自适应设置,如无监督域自适应(UDA)、半监督域自适应(SSDA)、无源域自适应(SFDA)等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信