Benchmarking coevolutionary teaming under classification problems with large attribute spaces

J. Doucette, P. Lichodzijewski, M. Heywood
{"title":"Benchmarking coevolutionary teaming under classification problems with large attribute spaces","authors":"J. Doucette, P. Lichodzijewski, M. Heywood","doi":"10.1145/1569901.1570226","DOIUrl":null,"url":null,"abstract":"Benchmarking of a team based model of Genetic Programming demonstrates that the naturally embedded style of feature selection is usefully extended by the teaming metaphor to provide solutions in terms of exceptionally low attribute counts. To take this concept to its logical conclusion the teaming model must be able to build teams with a non-overlapping behavioral trait, from a single population. The Symbiotic Bid-Based (SBB) algorithm is demonstrated to fit this purpose under an evaluation utilizing data sets with 650 to 5,000 attributes. The resulting solutions are one to two orders simpler than solutions identified under the alternative embedded paradigms of C4.5 and MaxEnt.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Benchmarking of a team based model of Genetic Programming demonstrates that the naturally embedded style of feature selection is usefully extended by the teaming metaphor to provide solutions in terms of exceptionally low attribute counts. To take this concept to its logical conclusion the teaming model must be able to build teams with a non-overlapping behavioral trait, from a single population. The Symbiotic Bid-Based (SBB) algorithm is demonstrated to fit this purpose under an evaluation utilizing data sets with 650 to 5,000 attributes. The resulting solutions are one to two orders simpler than solutions identified under the alternative embedded paradigms of C4.5 and MaxEnt.
大属性空间分类问题下协同进化团队的基准研究
基于团队的遗传规划模型的基准测试表明,自然嵌入的特征选择风格被团队隐喻有效地扩展,以提供异常低属性计数的解决方案。为了使这个概念得到合乎逻辑的结论,团队模型必须能够从单个人群中构建具有非重叠行为特征的团队。在利用650到5000个属性的数据集进行评估的情况下,证明了基于共生出价(Symbiotic Bid-Based, SBB)算法符合这一目的。由此产生的解决方案比在C4.5和MaxEnt的替代嵌入式范例下确定的解决方案简单一到两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信