Isolation Kernel Density Estimation

K. Ting, Takashi Washio, Jonathan R. Wells, Hang Zhang
{"title":"Isolation Kernel Density Estimation","authors":"K. Ting, Takashi Washio, Jonathan R. Wells, Hang Zhang","doi":"10.1109/ICDM51629.2021.00073","DOIUrl":null,"url":null,"abstract":"This paper shows that adaptive kernel density estimator (KDE) can be derived effectively from Isolation Kernel. Existing adaptive KDEs often employ a data independent kernel such as Gaussian kernel. Therefore, it requires an additional means to adapt its bandwidth locally in a given dataset. Because Isolation Kernel is a data dependent kernel which is derived directly from data, no additional adaptive operation is required. The resultant estimator called IKDE is the only KDE that is fast and adaptive. Existing KDEs are either fast but non-adaptive or adaptive but slow. In addition, using IKDE for anomaly detection, we identify two advantages of IKDE over LOF (Local Outlier Factor), contributing to significantly faster runtime.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":"344 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper shows that adaptive kernel density estimator (KDE) can be derived effectively from Isolation Kernel. Existing adaptive KDEs often employ a data independent kernel such as Gaussian kernel. Therefore, it requires an additional means to adapt its bandwidth locally in a given dataset. Because Isolation Kernel is a data dependent kernel which is derived directly from data, no additional adaptive operation is required. The resultant estimator called IKDE is the only KDE that is fast and adaptive. Existing KDEs are either fast but non-adaptive or adaptive but slow. In addition, using IKDE for anomaly detection, we identify two advantages of IKDE over LOF (Local Outlier Factor), contributing to significantly faster runtime.
隔离核密度估计
本文证明了自适应核密度估计(KDE)可以有效地从隔离核中得到。现有的自适应kde通常采用与数据无关的核,如高斯核。因此,它需要一种额外的方法来在给定的数据集中局部地调整其带宽。由于隔离内核是直接从数据派生的数据依赖内核,因此不需要额外的自适应操作。由此产生的估计器称为IKDE,它是唯一快速且自适应的KDE。现有的kde要么快但不自适应,要么自适应但慢。此外,使用IKDE进行异常检测,我们确定了IKDE相对于LOF(局部离群因子)的两个优势,有助于显著加快运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信