QuIET: A Text Classification Technique Using Automatically Generated Span Queries

Vassilis Polychronopoulos, N. Pendar, S. Jeffery
{"title":"QuIET: A Text Classification Technique Using Automatically Generated Span Queries","authors":"Vassilis Polychronopoulos, N. Pendar, S. Jeffery","doi":"10.1109/ICSC.2014.18","DOIUrl":null,"url":null,"abstract":"We propose a novel algorithm, QuIET, for binary classification of texts. The method automatically generates a set of span queries from a set of annotated documents and uses the query set to categorize unlabeled texts. QuIET generates models that are human understandable. We describe the method and evaluate it empirically against Support Vector Machines, demonstrating a comparable performance for a known curated dataset and a superior performance for some categories of noisy local businesses data. We also describe an active learning approach that is applicable to QuIET and can boost its performance.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel algorithm, QuIET, for binary classification of texts. The method automatically generates a set of span queries from a set of annotated documents and uses the query set to categorize unlabeled texts. QuIET generates models that are human understandable. We describe the method and evaluate it empirically against Support Vector Machines, demonstrating a comparable performance for a known curated dataset and a superior performance for some categories of noisy local businesses data. We also describe an active learning approach that is applicable to QuIET and can boost its performance.
QuIET:使用自动生成跨度查询的文本分类技术
我们提出了一种新的文本二分类算法——QuIET。该方法从一组带注释的文档自动生成一组跨查询,并使用该查询集对未标记的文本进行分类。QuIET生成人类可以理解的模型。我们描述了该方法,并根据支持向量机对其进行了经验评估,展示了对已知策划数据集的可比性能,以及对某些类别的嘈杂本地企业数据的优越性能。我们还描述了一种适用于QuIET的主动学习方法,可以提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信