Deep Q-Learning-Based Cooperative Caching Strategy for Fog Radio Access Networks

Fan Jiang, Jin Wang, Changyin Sun
{"title":"Deep Q-Learning-Based Cooperative Caching Strategy for Fog Radio Access Networks","authors":"Fan Jiang, Jin Wang, Changyin Sun","doi":"10.1109/ICCC52777.2021.9580239","DOIUrl":null,"url":null,"abstract":"To reduce the burden on fronthaul link as well as transmission delay, this paper proposes a cooperative edge caching strategy based on the deep Q-learning (DQN) algorithm considering the cooperative caching behavior between fog access points (F-APs) for Fog Radio Access Network (F-RAN). Specifically, to obtain the desired content popularity, we first predict the user preference probability with the topic model. Furthermore, considering the coupled multi-variable nature of the optimizing problem, a deep reinforcement learning (DRL) based content caching strategy is adopted to acquire the optimal content placement policy by combining the content popularity prediction results and content popularity. Finally, numerical simulation results prove the proposed scheme can reduce the average download delay compared with the existing algorithms.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC52777.2021.9580239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To reduce the burden on fronthaul link as well as transmission delay, this paper proposes a cooperative edge caching strategy based on the deep Q-learning (DQN) algorithm considering the cooperative caching behavior between fog access points (F-APs) for Fog Radio Access Network (F-RAN). Specifically, to obtain the desired content popularity, we first predict the user preference probability with the topic model. Furthermore, considering the coupled multi-variable nature of the optimizing problem, a deep reinforcement learning (DRL) based content caching strategy is adopted to acquire the optimal content placement policy by combining the content popularity prediction results and content popularity. Finally, numerical simulation results prove the proposed scheme can reduce the average download delay compared with the existing algorithms.
基于深度q学习的雾式无线接入网协同缓存策略
为了减少前传链路负担和传输延迟,考虑到雾无线接入网(F-RAN)中雾接入点(f - ap)之间的协作缓存行为,提出了一种基于深度q -学习(DQN)算法的协同边缘缓存策略。具体而言,为了获得期望的内容流行度,我们首先使用主题模型预测用户偏好概率。此外,考虑到优化问题的耦合多变量特性,采用基于深度强化学习(DRL)的内容缓存策略,将内容流行度预测结果与内容流行度相结合,获得最优的内容放置策略。最后,数值仿真结果表明,与现有算法相比,所提方案能够降低平均下载延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信