F. Angarita, A. Pérez-Pascual, T. Sansaloni, Javier Valls
{"title":"Efficient mapping on FPGA of a Viterbi decoder for wireless LANs","authors":"F. Angarita, A. Pérez-Pascual, T. Sansaloni, Javier Valls","doi":"10.1109/SIPS.2005.1579957","DOIUrl":null,"url":null,"abstract":"In this paper an optimized hardware implementation on FPGA of a Viterbi decoder is presented for WLAN. A fixed-point analysis is made and its performance is compared with a soft decision decoding floating point model with CSI weight. Only 6 bits are needed to perform the soft quantification and 7 bits to the CSI, in order to maintain the performance of the floating point model. A normalization method is proposed to increase the throughput of the decoder, being possible to decode 172 Mbps when it is implemented in a Virtex 2 device. Power consumption results of the decoder implementation are presented for Hiperlan/2 maximum rate. Moreover, it has been shown that it is possible to reduce the power consumption disabling the unnecessary hardware depending on the WLAN modes.","PeriodicalId":436123,"journal":{"name":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","volume":"456 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2005.1579957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper an optimized hardware implementation on FPGA of a Viterbi decoder is presented for WLAN. A fixed-point analysis is made and its performance is compared with a soft decision decoding floating point model with CSI weight. Only 6 bits are needed to perform the soft quantification and 7 bits to the CSI, in order to maintain the performance of the floating point model. A normalization method is proposed to increase the throughput of the decoder, being possible to decode 172 Mbps when it is implemented in a Virtex 2 device. Power consumption results of the decoder implementation are presented for Hiperlan/2 maximum rate. Moreover, it has been shown that it is possible to reduce the power consumption disabling the unnecessary hardware depending on the WLAN modes.