Divide-and-Conquer Algorithms for Computing Three-Dimensional Voronoi Diagrams

Daniel Dietsche, T. E. Dettling, C. Trefftz, Byron DeVries
{"title":"Divide-and-Conquer Algorithms for Computing Three-Dimensional Voronoi Diagrams","authors":"Daniel Dietsche, T. E. Dettling, C. Trefftz, Byron DeVries","doi":"10.1109/eIT57321.2023.10187378","DOIUrl":null,"url":null,"abstract":"While Voronoi diagrams are used in a wide range of applications, leading algorithms (e.g., Fortune's algorithm) are limited to two-dimensional Voronoi diagrams. Problematically, many of the space-dividing applications of Voronoi diagrams exist in three-dimensional spaces rather than two-dimensional spaces. While two-dimensional Voronoi diagrams have been used in cases where three-dimensional space can be simplified to two-dimensional space with an acceptable loss of precision, such simplification is not always feasible. In this paper we extend existing work on divide-and-conquer algorithms for computing two-dimensional discretized Voronoi diagrams by introducing and comparing two novel algorithms for calculating three-dimensional discretized Voronoi diagrams. A comparison of the two algorithms is presented for a range of both space sizes and number of sites.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While Voronoi diagrams are used in a wide range of applications, leading algorithms (e.g., Fortune's algorithm) are limited to two-dimensional Voronoi diagrams. Problematically, many of the space-dividing applications of Voronoi diagrams exist in three-dimensional spaces rather than two-dimensional spaces. While two-dimensional Voronoi diagrams have been used in cases where three-dimensional space can be simplified to two-dimensional space with an acceptable loss of precision, such simplification is not always feasible. In this paper we extend existing work on divide-and-conquer algorithms for computing two-dimensional discretized Voronoi diagrams by introducing and comparing two novel algorithms for calculating three-dimensional discretized Voronoi diagrams. A comparison of the two algorithms is presented for a range of both space sizes and number of sites.
计算三维Voronoi图的分治算法
虽然Voronoi图的应用范围很广,但领先的算法(例如《财富》的算法)仅限于二维Voronoi图。问题是,Voronoi图的许多空间划分应用存在于三维空间而不是二维空间。虽然二维Voronoi图在三维空间可以简化为二维空间的情况下使用,但精度损失是可以接受的,这种简化并不总是可行的。本文通过介绍和比较两种计算三维离散Voronoi图的新算法,扩展了计算二维离散Voronoi图的分治算法的现有工作。在空间大小和站点数量的范围内,对这两种算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信