Adaptive training of feedback neural networks for non-linear filtering

G. Dreyfus, O. Macchi, S. Marcos, O. Nerrand, L. Personnaz, P. Roussel-Ragot, D. Urbani, C. Vignat
{"title":"Adaptive training of feedback neural networks for non-linear filtering","authors":"G. Dreyfus, O. Macchi, S. Marcos, O. Nerrand, L. Personnaz, P. Roussel-Ragot, D. Urbani, C. Vignat","doi":"10.1109/NNSP.1992.253657","DOIUrl":null,"url":null,"abstract":"The authors propose a general framework which encompasses the training of neural networks and the adaptation of filters. It is shown that neural networks can be considered as general nonlinear filters which can be trained adaptively, i.e., which can undergo continual training. A unified view of gradient-based training algorithms for feedback networks is proposed, which gives rise to new algorithms. The use of some of these algorithms is illustrated by examples of nonlinear adaptive filtering and process identification.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"1 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The authors propose a general framework which encompasses the training of neural networks and the adaptation of filters. It is shown that neural networks can be considered as general nonlinear filters which can be trained adaptively, i.e., which can undergo continual training. A unified view of gradient-based training algorithms for feedback networks is proposed, which gives rise to new algorithms. The use of some of these algorithms is illustrated by examples of nonlinear adaptive filtering and process identification.<>
非线性滤波反馈神经网络的自适应训练
作者提出了一个包含神经网络训练和滤波器自适应的总体框架。结果表明,神经网络可以看作是一种可自适应训练的一般非线性滤波器,即可以连续训练。提出了一种基于梯度的反馈网络训练算法的统一观点,从而产生了新的算法。通过非线性自适应滤波和过程辨识的实例说明了其中一些算法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信