Parametric Bootstrapping for Assessing Software Reliability Measures

Toshio Kaneishi, T. Dohi
{"title":"Parametric Bootstrapping for Assessing Software Reliability Measures","authors":"Toshio Kaneishi, T. Dohi","doi":"10.1109/PRDC.2011.10","DOIUrl":null,"url":null,"abstract":"The bootstrapping is a statistical technique to replicate the underlying data based on the resampling, and enables us to investigate the statistical properties. It is useful to estimate standard errors and confidence intervals for complex estimators of complex parameters of the probability distribution from a small number of data. In software reliability engineering, it is common to estimate software reliability measures from the fault data (fault-detection time data) and to focus on only the point estimation. However, it is difficult in general to carry out the interval estimation or to obtain the probability distributions of the associated estimators, without applying any approximate method. In this paper, we assume that the software fault-detection process in the system testing is described by a non-homogeneous Poisson process, and develop a comprehensive technique to study the probability distributions on significant software reliability measures. Based on the maximum likelihood estimation, we assess the probability distributions of estimators such as the initial number of software faults remaining in the software, software intensity function, mean value function and software reliability function, via parametric bootstrapping method.","PeriodicalId":254760,"journal":{"name":"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The bootstrapping is a statistical technique to replicate the underlying data based on the resampling, and enables us to investigate the statistical properties. It is useful to estimate standard errors and confidence intervals for complex estimators of complex parameters of the probability distribution from a small number of data. In software reliability engineering, it is common to estimate software reliability measures from the fault data (fault-detection time data) and to focus on only the point estimation. However, it is difficult in general to carry out the interval estimation or to obtain the probability distributions of the associated estimators, without applying any approximate method. In this paper, we assume that the software fault-detection process in the system testing is described by a non-homogeneous Poisson process, and develop a comprehensive technique to study the probability distributions on significant software reliability measures. Based on the maximum likelihood estimation, we assess the probability distributions of estimators such as the initial number of software faults remaining in the software, software intensity function, mean value function and software reliability function, via parametric bootstrapping method.
评估软件可靠性措施的参数引导
自举是一种基于重采样复制底层数据的统计技术,使我们能够研究统计特性。从少量数据中估计概率分布的复杂参数的复杂估计量的标准误差和置信区间是有用的。在软件可靠性工程中,通常是从故障数据(故障检测时间数据)中估计软件可靠性度量,并且只关注点估计。然而,一般来说,如果不使用任何近似方法,很难进行区间估计或获得相关估计量的概率分布。本文假设系统测试中的软件故障检测过程是用非齐次泊松过程来描述的,并发展了一种综合的方法来研究重要软件可靠性度量的概率分布。在极大似然估计的基础上,通过参数自举方法对软件中剩余的初始软件故障数、软件强度函数、均值函数和软件可靠性函数等估计量的概率分布进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信