Scale space texture analysis for face anti-spoofing

Z. Boulkenafet, Jukka Komulainen, Xiaoyi Feng, A. Hadid
{"title":"Scale space texture analysis for face anti-spoofing","authors":"Z. Boulkenafet, Jukka Komulainen, Xiaoyi Feng, A. Hadid","doi":"10.1109/ICB.2016.7550078","DOIUrl":null,"url":null,"abstract":"Face spoofing detection (i.e. face anti-spoofing) is emerging as a new research area and has already attracted a good number of works during the past five years. This paper addresses for the first time the key problem of the variation in the input image quality and resolution in face anti-spoofing. In contrast to most existing works aiming at extracting multiscale descriptors from the original face images, we derive a new multiscale space to represent the face images before texture feature extraction. The new multiscale space representation is derived through multiscale filtering. Three multiscale filtering methods are considered including Gaussian scale space, Difference of Gaussian scale space and Multiscale Retinex. Extensive experiments on three challenging and publicly available face anti-spoofing databases demonstrate the effectiveness of our proposed multiscale space representation in improving the performance of face spoofing detection based on gray-scale and color texture descriptors.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Face spoofing detection (i.e. face anti-spoofing) is emerging as a new research area and has already attracted a good number of works during the past five years. This paper addresses for the first time the key problem of the variation in the input image quality and resolution in face anti-spoofing. In contrast to most existing works aiming at extracting multiscale descriptors from the original face images, we derive a new multiscale space to represent the face images before texture feature extraction. The new multiscale space representation is derived through multiscale filtering. Three multiscale filtering methods are considered including Gaussian scale space, Difference of Gaussian scale space and Multiscale Retinex. Extensive experiments on three challenging and publicly available face anti-spoofing databases demonstrate the effectiveness of our proposed multiscale space representation in improving the performance of face spoofing detection based on gray-scale and color texture descriptors.
人脸抗欺骗的尺度空间纹理分析
人脸欺骗检测(即人脸反欺骗)是一个新兴的研究领域,在过去的五年中已经吸引了大量的研究工作。本文首次解决了人脸防欺骗中输入图像质量和分辨率变化的关键问题。与大多数现有的从原始人脸图像中提取多尺度描述符的方法不同,我们在提取纹理特征之前推导了一个新的多尺度空间来表示人脸图像。通过多尺度滤波得到新的多尺度空间表示。考虑了高斯尺度空间、高斯尺度空间差分和多尺度Retinex三种多尺度滤波方法。在三个具有挑战性和公开可用的人脸抗欺骗数据库上进行的大量实验表明,我们提出的多尺度空间表示在提高基于灰度和颜色纹理描述符的人脸欺骗检测性能方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信