Study of ECG feature extraction for automatic classification based on wavelet transform

Ge Ding-fei
{"title":"Study of ECG feature extraction for automatic classification based on wavelet transform","authors":"Ge Ding-fei","doi":"10.1109/ICCSE.2012.6295123","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) feature extraction plays an important role in automatic classification and diagnosis. The current study focuses on the feature extraction of premature ventricular contraction (PVC) and normal sinus rhythm (NSR) for the discrimination purpose between them. The data in the analysis were collected from MIT-BIH database. A beat detection algorithm that was not affected by beat shape was introduced in the study. The ECG features were extracted based on wavelet transform for the analysis. Two feature sets were formed by selected wavelet coefficients and statistic parameters of wavelet coefficients for the comparative study. Support Vector Machine (SVM) algorithm was utilized to classify the ECG beats. The experimental results show that it is possible and feasible to extract ECG features with lower dimensions from wavelet coefficients in order to improve the classification results.","PeriodicalId":264063,"journal":{"name":"2012 7th International Conference on Computer Science & Education (ICCSE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2012.6295123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Electrocardiogram (ECG) feature extraction plays an important role in automatic classification and diagnosis. The current study focuses on the feature extraction of premature ventricular contraction (PVC) and normal sinus rhythm (NSR) for the discrimination purpose between them. The data in the analysis were collected from MIT-BIH database. A beat detection algorithm that was not affected by beat shape was introduced in the study. The ECG features were extracted based on wavelet transform for the analysis. Two feature sets were formed by selected wavelet coefficients and statistic parameters of wavelet coefficients for the comparative study. Support Vector Machine (SVM) algorithm was utilized to classify the ECG beats. The experimental results show that it is possible and feasible to extract ECG features with lower dimensions from wavelet coefficients in order to improve the classification results.
基于小波变换的心电特征自动分类研究
心电图特征提取在自动分类诊断中起着重要的作用。目前研究的重点是室性早搏(PVC)和正常窦性心律(NSR)的特征提取,以便对两者进行区分。分析数据来自MIT-BIH数据库。提出了一种不受拍形影响的拍检测算法。基于小波变换提取心电特征进行分析。将选取的小波系数和小波系数的统计参数组成两个特征集进行对比研究。采用支持向量机(SVM)算法对心电心跳进行分类。实验结果表明,从小波系数中提取较低维数的心电特征以改善分类结果是可能的和可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信