A Review on Machine Learning Algorithm for EEG Signal Analysis

S. Dhivya, A. Nithya
{"title":"A Review on Machine Learning Algorithm for EEG Signal Analysis","authors":"S. Dhivya, A. Nithya","doi":"10.1109/ICECA.2018.8474801","DOIUrl":null,"url":null,"abstract":"The electroencephalogram (EEG) signal is used to represents and records the electrical activity of the brain. The information obtained from the signals is useful for diagnosing and analyzing various brain diseases and brain conditions. If the brain diseases are left unidentified it leads to death. The early detection of brain diseases is very important to reduce the modality rate. For easy analysis of various brain activities some machine learning techniques like SVM, k-Means, ANN, Linear Classifier and XG Boost have been reviewed in this paper.","PeriodicalId":272623,"journal":{"name":"2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA.2018.8474801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The electroencephalogram (EEG) signal is used to represents and records the electrical activity of the brain. The information obtained from the signals is useful for diagnosing and analyzing various brain diseases and brain conditions. If the brain diseases are left unidentified it leads to death. The early detection of brain diseases is very important to reduce the modality rate. For easy analysis of various brain activities some machine learning techniques like SVM, k-Means, ANN, Linear Classifier and XG Boost have been reviewed in this paper.
脑电信号分析中的机器学习算法研究进展
脑电图(EEG)信号用来表示和记录大脑的电活动。从信号中获得的信息对诊断和分析各种脑部疾病和脑部状况非常有用。如果脑部疾病没有得到确认,就会导致死亡。早期发现脑疾病对降低病死率非常重要。为了便于分析各种大脑活动,本文综述了一些机器学习技术,如SVM, k-Means, ANN,线性分类器和XG Boost。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信