Page Segmentation Based on Steerable Pyramid Features

Mohamed Benjelil, R. Mullot, A. Alimi
{"title":"Page Segmentation Based on Steerable Pyramid Features","authors":"Mohamed Benjelil, R. Mullot, A. Alimi","doi":"10.1109/ICFHR.2012.253","DOIUrl":null,"url":null,"abstract":"Page segmentation and classification is very important in document layout analysis system before it is presented to an OCR system or for any other subsequent processing steps. In this paper, we propose an accurate and suitably designed system for complex documents segmentation. This system is based on steerable pyramid transform. The features extracted from pyramid sub-bands serve to locate and classify regions into text (either machine printed or handwritten) and non-text (images, graphics, drawings or paintings) in some noise-infected, deformed, multilingual, multi-script document images. These documents contain tabular structures, logos, stamps, handwritten script blocks, photos etc. The encouraging and promising results obtained on 1,000 official complex document images data set are presented in this research paper.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"29 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Page segmentation and classification is very important in document layout analysis system before it is presented to an OCR system or for any other subsequent processing steps. In this paper, we propose an accurate and suitably designed system for complex documents segmentation. This system is based on steerable pyramid transform. The features extracted from pyramid sub-bands serve to locate and classify regions into text (either machine printed or handwritten) and non-text (images, graphics, drawings or paintings) in some noise-infected, deformed, multilingual, multi-script document images. These documents contain tabular structures, logos, stamps, handwritten script blocks, photos etc. The encouraging and promising results obtained on 1,000 official complex document images data set are presented in this research paper.
基于可操纵金字塔特征的页面分割
页面分割和分类在文档布局分析系统中是非常重要的,然后才能提交给OCR系统或进行其他后续处理步骤。在本文中,我们提出了一个精确且设计合理的复杂文档分割系统。该系统基于可操纵的金字塔变换。从金字塔子带中提取的特征用于在一些受噪声感染、变形、多语言、多脚本的文档图像中定位和分类文本(机器打印或手写)和非文本(图像、图形、绘图或绘画)区域。这些文件包含表格结构、标志、邮票、手写脚本块、照片等。本文介绍了在1000个官方复杂文件图像数据集上获得的令人鼓舞和有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信