Feature Selection with High-Dimensional Imbalanced Data

J. V. Hulse, T. Khoshgoftaar, Amri Napolitano, Randall Wald
{"title":"Feature Selection with High-Dimensional Imbalanced Data","authors":"J. V. Hulse, T. Khoshgoftaar, Amri Napolitano, Randall Wald","doi":"10.1109/ICDMW.2009.35","DOIUrl":null,"url":null,"abstract":"Feature selection is an important topic in data mining, especially for high dimensional datasets. Filtering techniques in particular have received much attention, but detailed comparisons of their performance is lacking. This work considers three filters using classifier performance metrics and six commonly-used filters. All nine filtering techniques are compared and contrasted using five different microarray expression datasets. In addition, given that these datasets exhibit an imbalance between the number of positive and negative examples, the utilization of sampling techniques in the context of feature selection is examined.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151

Abstract

Feature selection is an important topic in data mining, especially for high dimensional datasets. Filtering techniques in particular have received much attention, but detailed comparisons of their performance is lacking. This work considers three filters using classifier performance metrics and six commonly-used filters. All nine filtering techniques are compared and contrasted using five different microarray expression datasets. In addition, given that these datasets exhibit an imbalance between the number of positive and negative examples, the utilization of sampling techniques in the context of feature selection is examined.
高维不平衡数据的特征选择
特征选择是数据挖掘中的一个重要课题,特别是对于高维数据集。过滤技术尤其受到关注,但缺乏对其性能的详细比较。这项工作考虑了使用分类器性能指标的三种过滤器和六种常用过滤器。使用五种不同的微阵列表达数据集对所有九种过滤技术进行了比较和对比。此外,考虑到这些数据集在正例和负例的数量之间表现出不平衡,本文还研究了在特征选择的背景下采样技术的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信