{"title":"Feedback design for robust tracking and robust stiffness in flight control actuators using a modified QFT technique","authors":"D. Thompson, J. Pruyn, A. Shukla","doi":"10.1109/ACC.1999.783141","DOIUrl":null,"url":null,"abstract":"The problem of dynamic stiffness of hydraulic servomechanisms has often been recognized as a significant performance issue in a variety of applications, the most notable of which includes flight control actuation. A hydraulic servomechanism is said to be \"stiff\" if it exhibits acceptable rejection of force disturbances within the control bandwidth. In this paper, an approach to feedback design for robust tracking and robust disturbance rejection is developed via the quantitative feedback theory (QFT) technique. As a result, it is shown that reasonable tracking and disturbance rejection specifications can be met by means of a fixed (i.e., nonadaptive), single loop controller. Robust tracking and robust disturbance rejection specifications are mapped into equivalent bounds on the (parametrically uncertain) sensitivity function; hence, the frequency ranges in which tracking or disturbance rejection specifications dominate become immediately obvious. In this paper, a realistic nonlinear differential equation model of the hydraulic servomechanism is developed, the linear parametric frequency response properties of the open loop system are analyzed, and the aforementioned QFT design procedure is carried out.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.783141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
The problem of dynamic stiffness of hydraulic servomechanisms has often been recognized as a significant performance issue in a variety of applications, the most notable of which includes flight control actuation. A hydraulic servomechanism is said to be "stiff" if it exhibits acceptable rejection of force disturbances within the control bandwidth. In this paper, an approach to feedback design for robust tracking and robust disturbance rejection is developed via the quantitative feedback theory (QFT) technique. As a result, it is shown that reasonable tracking and disturbance rejection specifications can be met by means of a fixed (i.e., nonadaptive), single loop controller. Robust tracking and robust disturbance rejection specifications are mapped into equivalent bounds on the (parametrically uncertain) sensitivity function; hence, the frequency ranges in which tracking or disturbance rejection specifications dominate become immediately obvious. In this paper, a realistic nonlinear differential equation model of the hydraulic servomechanism is developed, the linear parametric frequency response properties of the open loop system are analyzed, and the aforementioned QFT design procedure is carried out.