List decoding of polar codes

I. Tal, A. Vardy
{"title":"List decoding of polar codes","authors":"I. Tal, A. Vardy","doi":"10.1109/ISIT.2011.6033904","DOIUrl":null,"url":null,"abstract":"We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successive-cancellation decoder of Arikan. In the proposed list decoder, up to L decoding paths are considered concurrently at each decoding stage. Simulation results show that the resulting performance is very close to that of a maximum-likelihood decoder, even for moderate values of L. Thus it appears that the proposed list decoder bridges the gap between successive-cancellation and maximum-likelihood decoding of polar codes. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths at each decoding step, and then uses a pruning procedure to discard all but the L “best” paths. In order to implement this algorithm, we introduce a natural pruning criterion that can be easily evaluated. Nevertheless, straightforward implementation still requires O(L · n2) time, which is in stark contrast with the O(n log n) complexity of the original successive-cancellation decoder. We utilize the structure of polar codes to overcome this problem. Specifically, we devise an efficient, numerically stable, implementation taking only O(L · n log n) time and O(L · n) space.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1512","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1512

Abstract

We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successive-cancellation decoder of Arikan. In the proposed list decoder, up to L decoding paths are considered concurrently at each decoding stage. Simulation results show that the resulting performance is very close to that of a maximum-likelihood decoder, even for moderate values of L. Thus it appears that the proposed list decoder bridges the gap between successive-cancellation and maximum-likelihood decoding of polar codes. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths at each decoding step, and then uses a pruning procedure to discard all but the L “best” paths. In order to implement this algorithm, we introduce a natural pruning criterion that can be easily evaluated. Nevertheless, straightforward implementation still requires O(L · n2) time, which is in stark contrast with the O(n log n) complexity of the original successive-cancellation decoder. We utilize the structure of polar codes to overcome this problem. Specifically, we devise an efficient, numerically stable, implementation taking only O(L · n log n) time and O(L · n) space.
列出极性码的解码
本文描述了一种极码连续消列解码器,它是经典的Arikan连续消列解码器的推广。在提出的列表解码器中,在每个解码阶段同时考虑多达L个解码路径。仿真结果表明,即使对于中等的l值,所得到的性能也非常接近最大似然解码器的性能。因此,所提出的列表解码器弥补了两极码的连续消去和最大似然解码之间的差距。实现这种性能的特定列表解码算法在每个解码步骤中将解码路径的数量增加一倍,然后使用修剪过程丢弃除L个“最佳”路径外的所有路径。为了实现该算法,我们引入了一个易于评估的自然剪枝准则。然而,简单的实现仍然需要O(L·n2)的时间,这与原来的连续对消解码器的O(n log n)的复杂度形成了鲜明的对比。我们利用极性码的结构来克服这个问题。具体来说,我们设计了一个高效的,数值稳定的,只需要O(L·n log n)时间和O(L·n)空间的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信