{"title":"Simulation of Transitional and Bursty Wireless Visual Sensor Networks","authors":"Mark Caswell, Yao Liang","doi":"10.1109/UEMCON47517.2019.8993079","DOIUrl":null,"url":null,"abstract":"Communication links in low-power wireless visual sensor networks (WVSNs) are subject to short-term and long-term noise variations. These variations can cause a WVSN to exhibit prolonged or periodic transitional or bursty transmission performance. In this paper, we present our work on how to generate noise traces that simulate real-world transitional and bursty network behavior in TOSSIM. We develop a toolset called BurstyGen for TOSSIM which can facilitate WVSN protocol designers and application developers to better understand WVSN performance under these conditions. BurstyGen allows users to model both short time-scale and long time-scale variations in WVSN noise environments for the simulation and testing of WVSN system algorithms and protocols.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Communication links in low-power wireless visual sensor networks (WVSNs) are subject to short-term and long-term noise variations. These variations can cause a WVSN to exhibit prolonged or periodic transitional or bursty transmission performance. In this paper, we present our work on how to generate noise traces that simulate real-world transitional and bursty network behavior in TOSSIM. We develop a toolset called BurstyGen for TOSSIM which can facilitate WVSN protocol designers and application developers to better understand WVSN performance under these conditions. BurstyGen allows users to model both short time-scale and long time-scale variations in WVSN noise environments for the simulation and testing of WVSN system algorithms and protocols.