{"title":"Dynamic Graph Visualization with Multiple Visual Metaphors","authors":"Michael Burch","doi":"10.1145/2801040.2801048","DOIUrl":null,"url":null,"abstract":"Visualizing dynamic graphs is challenging due to the many data dimensions to be displayed such as graph vertices and edges with their attached weights or attributes and the additional time dimension. Moreover, edge directions with multiplicities and the graph topology are also important inherent features. However, in many dynamic graph visualization techniques each graph in a sequence is treated the same way, i.e., it is visually encoded in the same visual metaphor or even in the same layout. This visualization strategy can be problematic if the graphs are changing topologically over time, i.e., if a sparse graph becomes denser and denser over time or a star pattern is changing into a dense cluster of connected vertices. Such a dynamic graph data scenario demands for a visualization approach which is able to adapt the applied visual metaphor to each graph separately. In this paper we show an idea to solve this problem by using multiple visual metaphors for dynamic graphs which are computed automatically by algorithms analyzing each individual graph based on a given repertoire of graph features. The biggest issue in this technique for the graph dynamics, however, is the preservation of the viewer's mental map at metaphor changes, i.e., to guide him through the graph changes with the goal to explore the data for time-varying patterns. To reach this goal we support the analyst by an interactive highlighting feature.","PeriodicalId":399556,"journal":{"name":"Proceedings of the 8th International Symposium on Visual Information Communication and Interaction","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2801040.2801048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Visualizing dynamic graphs is challenging due to the many data dimensions to be displayed such as graph vertices and edges with their attached weights or attributes and the additional time dimension. Moreover, edge directions with multiplicities and the graph topology are also important inherent features. However, in many dynamic graph visualization techniques each graph in a sequence is treated the same way, i.e., it is visually encoded in the same visual metaphor or even in the same layout. This visualization strategy can be problematic if the graphs are changing topologically over time, i.e., if a sparse graph becomes denser and denser over time or a star pattern is changing into a dense cluster of connected vertices. Such a dynamic graph data scenario demands for a visualization approach which is able to adapt the applied visual metaphor to each graph separately. In this paper we show an idea to solve this problem by using multiple visual metaphors for dynamic graphs which are computed automatically by algorithms analyzing each individual graph based on a given repertoire of graph features. The biggest issue in this technique for the graph dynamics, however, is the preservation of the viewer's mental map at metaphor changes, i.e., to guide him through the graph changes with the goal to explore the data for time-varying patterns. To reach this goal we support the analyst by an interactive highlighting feature.