Speech/music separation using non-negative matrix factorization with combination of cost functions

B. Nasersharif, S. Abdali
{"title":"Speech/music separation using non-negative matrix factorization with combination of cost functions","authors":"B. Nasersharif, S. Abdali","doi":"10.1109/AISP.2015.7123491","DOIUrl":null,"url":null,"abstract":"A solution for separating speech from music signal as a single channel source separation is Non-negative Matrix Factorization (NMF). In this approach spectrogram of each source signal is factorized as multiplication of two matrices which are known as basis and weight matrices. To achieve proper estimation of signal spectrogram, weight and basis matrices are updated iteratively. To estimate distance between signal and its estimation a cost function is used usually. Different cost functions have been introduced based on Kullback-Leibler (KL) and Itakura-Saito (IS) divergences. IS divergence is scale-invariant and so it is suitable for the conditions in which the coefficients of signal have a large dynamic range, for example in music short-term spectra. Based on this IS property, in this paper, we propose to use IS divergence as cost function of NMF in the training stage for music and on the other hand we suggest to use KL divergence as NMF cost function in the training stage for speech. Moreover, in the decomposition stage, we propose to use a linear combination of these two divergences in addition to a regularization term which considers temporal continuity information as a prior knowledge. Experimental results on one hour of speech and music, shows a good trade-off between signal to inference ratio (SIR) of speech and music in comparison to conventional NMF methods.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A solution for separating speech from music signal as a single channel source separation is Non-negative Matrix Factorization (NMF). In this approach spectrogram of each source signal is factorized as multiplication of two matrices which are known as basis and weight matrices. To achieve proper estimation of signal spectrogram, weight and basis matrices are updated iteratively. To estimate distance between signal and its estimation a cost function is used usually. Different cost functions have been introduced based on Kullback-Leibler (KL) and Itakura-Saito (IS) divergences. IS divergence is scale-invariant and so it is suitable for the conditions in which the coefficients of signal have a large dynamic range, for example in music short-term spectra. Based on this IS property, in this paper, we propose to use IS divergence as cost function of NMF in the training stage for music and on the other hand we suggest to use KL divergence as NMF cost function in the training stage for speech. Moreover, in the decomposition stage, we propose to use a linear combination of these two divergences in addition to a regularization term which considers temporal continuity information as a prior knowledge. Experimental results on one hour of speech and music, shows a good trade-off between signal to inference ratio (SIR) of speech and music in comparison to conventional NMF methods.
语音/音乐分离使用非负矩阵分解与成本函数的组合
非负矩阵分解(NMF)是一种将语音和音乐信号作为单通道源分离的方法。在这种方法中,每个源信号的频谱图被分解为两个矩阵的乘法,这两个矩阵被称为基矩阵和权矩阵。为了实现对信号谱图的正确估计,迭代更新权矩阵和基矩阵。为了估计信号与估计信号之间的距离,通常使用代价函数。基于Kullback-Leibler (KL)和Itakura-Saito (IS)散度引入了不同的代价函数。IS散度是尺度不变的,适用于信号系数动态范围较大的情况,如音乐短时谱。基于这一IS性质,本文提出在音乐训练阶段使用IS散度作为NMF的代价函数,另一方面,我们建议在语音训练阶段使用KL散度作为NMF的代价函数。此外,在分解阶段,我们建议使用这两个散度的线性组合以及将时间连续性信息作为先验知识的正则化项。一小时语音和音乐的实验结果表明,与传统的NMF方法相比,语音和音乐的信号推理比(SIR)之间有很好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信