The number of limit cycles from the perturbation of a quadratic isochronous system with two switching lines

Ai Ke, Maoan Han, Wei-Jian Geng
{"title":"The number of limit cycles from the perturbation of a quadratic isochronous system with two switching lines","authors":"Ai Ke, Maoan Han, Wei-Jian Geng","doi":"10.3934/cpaa.2022047","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we give an upper bound (for <inline-formula><tex-math id=\"M1\">\\begin{document}$ n\\geq3 $\\end{document}</tex-math></inline-formula>) and the least upper bound (for <inline-formula><tex-math id=\"M2\">\\begin{document}$ n = 1,2 $\\end{document}</tex-math></inline-formula>) of the number of limit cycles bifurcated from period annuli of a quadratic isochronous system under the piecewise polynomial perturbations of degree <inline-formula><tex-math id=\"M3\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula>, respectively. The results improve the conclusions in [<xref ref-type=\"bibr\" rid=\"b19\">19</xref>].</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we give an upper bound (for \begin{document}$ n\geq3 $\end{document}) and the least upper bound (for \begin{document}$ n = 1,2 $\end{document}) of the number of limit cycles bifurcated from period annuli of a quadratic isochronous system under the piecewise polynomial perturbations of degree \begin{document}$ n $\end{document}, respectively. The results improve the conclusions in [19].

具有两条切换线的二次等时系统摄动的极限环数
In this paper, we give an upper bound (for \begin{document}$ n\geq3 $\end{document}) and the least upper bound (for \begin{document}$ n = 1,2 $\end{document}) of the number of limit cycles bifurcated from period annuli of a quadratic isochronous system under the piecewise polynomial perturbations of degree \begin{document}$ n $\end{document}, respectively. The results improve the conclusions in [19].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信