An Intrinsic Proof of an Extension of Itô’s Isometry for Anticipating Stochastic Integrals

H. Kuo, Pujan Shrestha, S. Sinha
{"title":"An Intrinsic Proof of an Extension of Itô’s Isometry for Anticipating Stochastic Integrals","authors":"H. Kuo, Pujan Shrestha, S. Sinha","doi":"10.31390/josa.2.4.08","DOIUrl":null,"url":null,"abstract":"Itô’s isometry forms the cornerstone of the definition of Itô’s integral and consequently the theory of stochastic calculus. Therefore, for any theory which extends Itô’s theory, it is important to know if the isometry holds. In this paper, we use probabilistic arguments to demonstrate that the extension of the isometry formula contains an extra term for the anticipating stochastic integral defined by Ayed and Kuo. We give examples to illustrate the usage of this formula and to show that the extra term can be positive or negative.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.4.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Itô’s isometry forms the cornerstone of the definition of Itô’s integral and consequently the theory of stochastic calculus. Therefore, for any theory which extends Itô’s theory, it is important to know if the isometry holds. In this paper, we use probabilistic arguments to demonstrate that the extension of the isometry formula contains an extra term for the anticipating stochastic integral defined by Ayed and Kuo. We give examples to illustrate the usage of this formula and to show that the extra term can be positive or negative.
预测随机积分的Itô等距的扩展的内在证明
Itô的等长构成了Itô积分定义的基石,因此也构成了随机微积分理论的基石。因此,对于任何延伸Itô理论的理论来说,知道等距是否成立是很重要的。在本文中,我们用概率论证证明了等距公式的推广包含了由Ayed和Kuo定义的预测随机积分的额外项。我们举一些例子来说明这个公式的用法,并说明额外的项可以是正的也可以是负的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信