Quantum state engineering and state tomography using photon-number-resolving measurements (Conference Presentation)

Rajveer Nehra, A. Win, M. Eaton, R. Shahrokhshahi, N. Sridhar, T. Gerrits, A. Lita, S. Nam, O. Pfister
{"title":"Quantum state engineering and state tomography using photon-number-resolving measurements (Conference Presentation)","authors":"Rajveer Nehra, A. Win, M. Eaton, R. Shahrokhshahi, N. Sridhar, T. Gerrits, A. Lita, S. Nam, O. Pfister","doi":"10.1117/12.2527491","DOIUrl":null,"url":null,"abstract":"Quantum state engineering and state characterization is a key task in quantum information processing in both discrete and continuous variable systems in the optical domain. In particular, quantum states with non-Gaussian (i.e., non-positive) Wigner quasiprobability distribution functions are crucial to universal, fault-tolerant quantum computing with continuous variables. In this talk, we present our recent results on single-photon Fock state tomography using Photon-Number-Resolving (PNR) measurements. We generated a highly pure narrow-band single-photon Fock state by heralding cavity-enhanced spontaneous-parametric-downconversion from a PPKTP optical parametric oscillator. The Wigner function was reconstructed with photon statistics obtained using superconducting transition-edge sensors with an overall system efficiency of 58(2)%. We then discuss quantum state engineering for pure displaced single-photon Fock states, optical cat states, and approximate GKP states using coherent states and single-photon states along with linear optics and PNR measurements. We report our experimental progress for the same.","PeriodicalId":314895,"journal":{"name":"Quantum Communications and Quantum Imaging XVII","volume":"886 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Communications and Quantum Imaging XVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2527491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum state engineering and state characterization is a key task in quantum information processing in both discrete and continuous variable systems in the optical domain. In particular, quantum states with non-Gaussian (i.e., non-positive) Wigner quasiprobability distribution functions are crucial to universal, fault-tolerant quantum computing with continuous variables. In this talk, we present our recent results on single-photon Fock state tomography using Photon-Number-Resolving (PNR) measurements. We generated a highly pure narrow-band single-photon Fock state by heralding cavity-enhanced spontaneous-parametric-downconversion from a PPKTP optical parametric oscillator. The Wigner function was reconstructed with photon statistics obtained using superconducting transition-edge sensors with an overall system efficiency of 58(2)%. We then discuss quantum state engineering for pure displaced single-photon Fock states, optical cat states, and approximate GKP states using coherent states and single-photon states along with linear optics and PNR measurements. We report our experimental progress for the same.
使用光子数分辨测量的量子态工程和态层析成像(会议报告)
量子态工程和量子态表征是光域中离散和连续变量系统中量子信息处理的关键任务。特别是,具有非高斯(即非正)Wigner准概率分布函数的量子态对于具有连续变量的通用容错量子计算至关重要。在这次演讲中,我们介绍了我们使用光子数分辨(PNR)测量的单光子Fock态层析成像的最新结果。我们利用PPKTP光参量振荡器的腔增强自发参数下转换,产生了一个高纯度的窄带单光子Fock态。利用超导过渡边缘传感器获得的光子统计量重建Wigner函数,系统总效率为58(2)%。然后,我们讨论了使用相干态和单光子态以及线性光学和PNR测量的纯位移单光子Fock态、光学cat态和近似GKP态的量子态工程。我们报告了我们的实验进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信