RITNet: A Rotation Invariant Transformer based Network for Point Cloud Registration

Min Yang, Yaochen Li, Su Wang, Shaohan Yang, Hujun Liu
{"title":"RITNet: A Rotation Invariant Transformer based Network for Point Cloud Registration","authors":"Min Yang, Yaochen Li, Su Wang, Shaohan Yang, Hujun Liu","doi":"10.1109/ICTAI56018.2022.00096","DOIUrl":null,"url":null,"abstract":"Conventional point cloud registration methods usually employ an encoder-decoder architecture, where mid-level features are locally aggregated to extract geometric information. However, the over-reliance on local features may raise the boundary points cannot be adequately matched for two point clouds. To address this issue, we argue that the boundary features can be further enhanced by the rotation information, and propose a rotation invariant representation to replace common 3D Cartesian coordinates as the network inputs that enhances generalization to arbitrary orientations. Based on this technique, we propose rotation invariant Transformer for point cloud registration, which utilizes insensitivity to arrangement and quantity of data in the Transformer module to capture global structural knowledge within local parts for overall comprehension of each point clouds. Extensive quantitative and qualitative experimental on ModelNet40 evaluations show the effectiveness of the proposed method.","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional point cloud registration methods usually employ an encoder-decoder architecture, where mid-level features are locally aggregated to extract geometric information. However, the over-reliance on local features may raise the boundary points cannot be adequately matched for two point clouds. To address this issue, we argue that the boundary features can be further enhanced by the rotation information, and propose a rotation invariant representation to replace common 3D Cartesian coordinates as the network inputs that enhances generalization to arbitrary orientations. Based on this technique, we propose rotation invariant Transformer for point cloud registration, which utilizes insensitivity to arrangement and quantity of data in the Transformer module to capture global structural knowledge within local parts for overall comprehension of each point clouds. Extensive quantitative and qualitative experimental on ModelNet40 evaluations show the effectiveness of the proposed method.
RITNet:一种基于旋转不变变压器的点云配准网络
传统的点云配准方法通常采用编码器-解码器架构,在该架构中,中间层特征局部聚合以提取几何信息。然而,过度依赖局部特征可能会导致两点云的边界点无法充分匹配。为了解决这一问题,我们认为旋转信息可以进一步增强边界特征,并提出了一种旋转不变表示来取代常见的三维笛卡尔坐标作为网络输入,从而增强了对任意方向的泛化。在此基础上,我们提出了一种用于点云配准的旋转不变Transformer方法,该方法利用Transformer模块中对数据排列和数量的不敏感性来捕获局部部件内的全局结构知识,从而全面理解每个点云。在ModelNet40评价上进行的大量定量和定性实验表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信