The configurational free energy of a polymer chain

F. Ganazzoli, G. Allegra, E. Colombo, M. D. Vitis
{"title":"The configurational free energy of a polymer chain","authors":"F. Ganazzoli, G. Allegra, E. Colombo, M. D. Vitis","doi":"10.1002/MATS.1992.040010504","DOIUrl":null,"url":null,"abstract":"The configurational, or elastic, free energy Ael of a polymer chain is discussed in terms of the Fourier configurational approach. The importance of accounting for all degrees of freedom of the chain is shown in comparison with affine mean-field theories and with scaling theories of chain expansion and contraction. In case of strong contraction the chain does show neither affinity nor self-similarity, and we get Ael ∼ N1/3, N being the number of chain bonds. Conversely, in case of good-solvent expansion we find Ael ∼ N. The same result holds in the vicinity of the Θ-temperature, where Ael is also proportional to [(T − Θ)/T]2.","PeriodicalId":227512,"journal":{"name":"Die Makromolekulare Chemie, Theory and Simulations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Die Makromolekulare Chemie, Theory and Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/MATS.1992.040010504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The configurational, or elastic, free energy Ael of a polymer chain is discussed in terms of the Fourier configurational approach. The importance of accounting for all degrees of freedom of the chain is shown in comparison with affine mean-field theories and with scaling theories of chain expansion and contraction. In case of strong contraction the chain does show neither affinity nor self-similarity, and we get Ael ∼ N1/3, N being the number of chain bonds. Conversely, in case of good-solvent expansion we find Ael ∼ N. The same result holds in the vicinity of the Θ-temperature, where Ael is also proportional to [(T − Θ)/T]2.
聚合物链的构型自由能
用傅里叶构型方法讨论了聚合物链的构型或弹性自由能。通过与仿射平均场理论和链扩张和收缩的标度理论的比较,表明了考虑链的所有自由度的重要性。在强收缩的情况下,链既不表现亲和性,也不表现自相似性,我们得到Ael ~ N /3, N为链键数。相反,在溶剂膨胀良好的情况下,我们发现Ael ~ n。在Θ-temperature附近也有同样的结果,Ael也与[(T−Θ)/T]2成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信