Estimating Test Statistic Distributions for Multiple Hypothesis Testing in Sensor Networks

Martin Gölz, A. Zoubir, V. Koivunen
{"title":"Estimating Test Statistic Distributions for Multiple Hypothesis Testing in Sensor Networks","authors":"Martin Gölz, A. Zoubir, V. Koivunen","doi":"10.1109/CISS53076.2022.9751186","DOIUrl":null,"url":null,"abstract":"We recently proposed a novel approach to perform spatial inference using large-scale sensor networks and multiple hypothesis testing [1]. It identifies the regions in which a spatial phenomenon of interest exhibits different behavior from its nominal statistical model. To reduce the intra-sensor-network communication overhead, the raw data is pre-processed at the sensors locally and a summary statistic is send to the cloud or fusion center where the actual spatial inference using multiple hypothesis testing and false discovery control takes place. Local false discovery rates (lfdrs) are estimated to express local believes in the state of the spatial signal. In this work, we extend our approach by proposing two novel lfdr estimators stemming from the Expectation-Maximization method. The estimation bias is considered to explain the differences in performance among the compared lfdr estimators.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We recently proposed a novel approach to perform spatial inference using large-scale sensor networks and multiple hypothesis testing [1]. It identifies the regions in which a spatial phenomenon of interest exhibits different behavior from its nominal statistical model. To reduce the intra-sensor-network communication overhead, the raw data is pre-processed at the sensors locally and a summary statistic is send to the cloud or fusion center where the actual spatial inference using multiple hypothesis testing and false discovery control takes place. Local false discovery rates (lfdrs) are estimated to express local believes in the state of the spatial signal. In this work, we extend our approach by proposing two novel lfdr estimators stemming from the Expectation-Maximization method. The estimation bias is considered to explain the differences in performance among the compared lfdr estimators.
传感器网络中多重假设检验的检验统计量分布估计
我们最近提出了一种使用大规模传感器网络和多重假设检验进行空间推理的新方法[1]。它确定了感兴趣的空间现象与其名义统计模型表现出不同行为的区域。为了减少传感器内部网络通信开销,原始数据在传感器本地进行预处理,汇总统计数据发送到云或融合中心,在云或融合中心使用多重假设检验和错误发现控制进行实际空间推断。估计局部错误发现率(lfdrs)来表达空间信号状态下的局部置信度。在这项工作中,我们通过提出源于期望最大化方法的两个新的lfdr估计器来扩展我们的方法。估计偏差被认为是解释比较lfdr估计器之间性能差异的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信