The Empirical Evaluation of Models Predicting Bike Sharing Demand

Seung Han Choi, Mijin Han
{"title":"The Empirical Evaluation of Models Predicting Bike Sharing Demand","authors":"Seung Han Choi, Mijin Han","doi":"10.1109/ICTC49870.2020.9289176","DOIUrl":null,"url":null,"abstract":"Most bike sharing system has an imbalance problem in certain time zones and certain rental stations where bicycles are insufficient or overloaded. So, a demand forecasting model is required to solve this problem. In this paper, we evaluate the performance applying the machine learning, neural network model with the bicycle demand dataset collected from the bicycle sharing system in actual operation in order to develop a model that predicts bicycle demand information for choosing a proper demand forecasting model. From the results, the neural network models outperform the machine learning models.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"8 Suppl F 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Most bike sharing system has an imbalance problem in certain time zones and certain rental stations where bicycles are insufficient or overloaded. So, a demand forecasting model is required to solve this problem. In this paper, we evaluate the performance applying the machine learning, neural network model with the bicycle demand dataset collected from the bicycle sharing system in actual operation in order to develop a model that predicts bicycle demand information for choosing a proper demand forecasting model. From the results, the neural network models outperform the machine learning models.
共享单车需求预测模型的实证评价
大多数共享单车系统在某些时区和某些租赁站存在自行车不足或超载的不平衡问题。因此,需要一个需求预测模型来解决这一问题。本文采用机器学习、神经网络模型,结合共享单车系统实际运行中的自行车需求数据集,对其性能进行评估,建立预测自行车需求信息的模型,为选择合适的需求预测模型提供依据。从结果来看,神经网络模型优于机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信