{"title":"Rewriting Modulo βin the λΠ-Calculus Modulo","authors":"Ronan Saillard","doi":"10.4204/EPTCS.185.6","DOIUrl":null,"url":null,"abstract":"The λ Π-calculus Modulo is a variant of the λ-calculus with dependent types where β-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the λ Π-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with β-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the β-reduction and rewrite rules with λ-abstraction on their left-hand side, we introduce a notion of rewriting modulo β for the λ Π-calculus Modulo. We prove that confluence of rewriting modulo β is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the λ Π-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the λ Π-calculus Modulo.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.185.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The λ Π-calculus Modulo is a variant of the λ-calculus with dependent types where β-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the λ Π-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with β-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the β-reduction and rewrite rules with λ-abstraction on their left-hand side, we introduce a notion of rewriting modulo β for the λ Π-calculus Modulo. We prove that confluence of rewriting modulo β is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the λ Π-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the λ Π-calculus Modulo.