Toward Feature-Preserving 2D and 3D Vector Field Compression

Xin Liang, Hanqi Guo, S. Di, F. Cappello, Mukund Raj, Chunhui Liu, K. Ono, Zizhong Chen, T. Peterka
{"title":"Toward Feature-Preserving 2D and 3D Vector Field Compression","authors":"Xin Liang, Hanqi Guo, S. Di, F. Cappello, Mukund Raj, Chunhui Liu, K. Ono, Zizhong Chen, T. Peterka","doi":"10.1109/PacificVis48177.2020.6431","DOIUrl":null,"url":null,"abstract":"The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and 3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear vector fields. We define the preservation of critical points as, without any false positive, false negative, or false type change in the decompressed data, (1) keeping each critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio, and various vector field visualizations with several scientific applications.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.6431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and 3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear vector fields. We define the preservation of critical points as, without any false positive, false negative, or false type change in the decompressed data, (1) keeping each critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio, and various vector field visualizations with several scientific applications.
面向特征保持的二维和三维矢量场压缩
这项工作的目的是开发错误有界有损压缩方法,以保持二维和三维矢量场的拓扑特征。具体来说,我们探讨了分段线性向量场中临界点的保存。我们将临界点的保存定义为:在解压缩数据中没有任何假阳性、假阴性或假类型的变化,(1)保留每个临界点在其原始单元中,(2)保留每个临界点的类型(例如鞍节点和吸引节点)。该方法的关键是为每个网格点调整一个逐顶点的误差界,并使用改进的有损压缩器将输入数据与误差界域一起压缩。我们的压缩算法对于大数据处理和原位处理也可以并行化。我们通过将我们的方法与现有的有损压缩器在假阳性/阴性/类型率、压缩比和各种科学应用的矢量场可视化方面进行比较,对我们的方法进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信