GETnet: a general framework for evolutionary temporal neural networks

R. Derakhshani
{"title":"GETnet: a general framework for evolutionary temporal neural networks","authors":"R. Derakhshani","doi":"10.1109/IJCNN.2005.1556431","DOIUrl":null,"url":null,"abstract":"Among the more challenging problems in the design of temporal neural networks are the incorporation of short and long-term memories and the choice of network topology. Delayed copies of network signals can form short-term memory (STM), whereas feedback loops can constitute long-term memories (LTM). This paper introduces a new general evolutionary temporal neural network framework (GETnet) for the automated design of neural networks with distributed STM and LTM. GETnet is a step towards the realization of general intelligent systems that can be applied to a broad range of problems. GETnet utilizes nonlinear moving average and autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in architecture, synaptic delay, and synaptic weight spaces. The ability to evolve arbitrary time-delay connections enables GETnet to find novel answers to classification and system identification tasks. A new temporal minimum description length policy ensures creation of fast and compact networks with improved generalization capabilities. Simulations using Mackey-Glass time series are presented to demonstrate the above stated capabilities of GETnet.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Among the more challenging problems in the design of temporal neural networks are the incorporation of short and long-term memories and the choice of network topology. Delayed copies of network signals can form short-term memory (STM), whereas feedback loops can constitute long-term memories (LTM). This paper introduces a new general evolutionary temporal neural network framework (GETnet) for the automated design of neural networks with distributed STM and LTM. GETnet is a step towards the realization of general intelligent systems that can be applied to a broad range of problems. GETnet utilizes nonlinear moving average and autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in architecture, synaptic delay, and synaptic weight spaces. The ability to evolve arbitrary time-delay connections enables GETnet to find novel answers to classification and system identification tasks. A new temporal minimum description length policy ensures creation of fast and compact networks with improved generalization capabilities. Simulations using Mackey-Glass time series are presented to demonstrate the above stated capabilities of GETnet.
GETnet:进化时间神经网络的通用框架
在时间神经网络的设计中,较具挑战性的问题是短时记忆和长时记忆的结合以及网络拓扑的选择。网络信号的延迟拷贝可以形成短期记忆(STM),而反馈回路可以构成长期记忆(LTM)。本文介绍了一种新的通用进化时间神经网络框架(GETnet),用于分布式时间模型和长期模型神经网络的自动化设计。GETnet是实现可应用于广泛问题的通用智能系统的一步。GETnet利用非线性移动平均和自回归节点和子电路,这些节点和子电路通过增强的梯度下降和结构、突触延迟和突触权重空间的进化搜索来训练。发展任意延时连接的能力使GETnet能够找到分类和系统识别任务的新答案。一个新的时间最小描述长度策略确保创建快速和紧凑的网络与改进的泛化能力。通过使用Mackey-Glass时间序列进行仿真,验证了GETnet的上述功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信