{"title":"GETnet: a general framework for evolutionary temporal neural networks","authors":"R. Derakhshani","doi":"10.1109/IJCNN.2005.1556431","DOIUrl":null,"url":null,"abstract":"Among the more challenging problems in the design of temporal neural networks are the incorporation of short and long-term memories and the choice of network topology. Delayed copies of network signals can form short-term memory (STM), whereas feedback loops can constitute long-term memories (LTM). This paper introduces a new general evolutionary temporal neural network framework (GETnet) for the automated design of neural networks with distributed STM and LTM. GETnet is a step towards the realization of general intelligent systems that can be applied to a broad range of problems. GETnet utilizes nonlinear moving average and autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in architecture, synaptic delay, and synaptic weight spaces. The ability to evolve arbitrary time-delay connections enables GETnet to find novel answers to classification and system identification tasks. A new temporal minimum description length policy ensures creation of fast and compact networks with improved generalization capabilities. Simulations using Mackey-Glass time series are presented to demonstrate the above stated capabilities of GETnet.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Among the more challenging problems in the design of temporal neural networks are the incorporation of short and long-term memories and the choice of network topology. Delayed copies of network signals can form short-term memory (STM), whereas feedback loops can constitute long-term memories (LTM). This paper introduces a new general evolutionary temporal neural network framework (GETnet) for the automated design of neural networks with distributed STM and LTM. GETnet is a step towards the realization of general intelligent systems that can be applied to a broad range of problems. GETnet utilizes nonlinear moving average and autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in architecture, synaptic delay, and synaptic weight spaces. The ability to evolve arbitrary time-delay connections enables GETnet to find novel answers to classification and system identification tasks. A new temporal minimum description length policy ensures creation of fast and compact networks with improved generalization capabilities. Simulations using Mackey-Glass time series are presented to demonstrate the above stated capabilities of GETnet.