Temperature-dependent scalable large signal CMOS device model developed for millimeter-wave power amplifier design

N. Mallavarpu, D. Dawn, J. Laskar
{"title":"Temperature-dependent scalable large signal CMOS device model developed for millimeter-wave power amplifier design","authors":"N. Mallavarpu, D. Dawn, J. Laskar","doi":"10.1109/RFIC.2011.5940692","DOIUrl":null,"url":null,"abstract":"As the gate length of CMOS processes has become smaller and the device fT has increased, applications such as CMOS power amplifiers in the millimeter-wave region have become feasible and practical. This paper describes the development of an empirical large-signal model for sub-100 nm CMOS transistors and demonstrates its successful use in the design of a 4-stage 60 GHz CMOS power amplifier with measured performance of 20dB gain, +10.3dBm P1dB, 13.5dBm Psat and 13% PAE. A novel drain-source current formulation is used, accurately modeling both strong-inversion and sub- threshold characteristics of short-channel, 90nm CMOS transistors. Further model enhancement is obtained through optimization for millimeter-wave applications using an optimized parasitic extraction process as well as the incorporation of size scalability and temperature dependency, making this modeling approach highly robust.","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"22 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As the gate length of CMOS processes has become smaller and the device fT has increased, applications such as CMOS power amplifiers in the millimeter-wave region have become feasible and practical. This paper describes the development of an empirical large-signal model for sub-100 nm CMOS transistors and demonstrates its successful use in the design of a 4-stage 60 GHz CMOS power amplifier with measured performance of 20dB gain, +10.3dBm P1dB, 13.5dBm Psat and 13% PAE. A novel drain-source current formulation is used, accurately modeling both strong-inversion and sub- threshold characteristics of short-channel, 90nm CMOS transistors. Further model enhancement is obtained through optimization for millimeter-wave applications using an optimized parasitic extraction process as well as the incorporation of size scalability and temperature dependency, making this modeling approach highly robust.
用于毫米波功率放大器设计的温度相关可扩展大信号CMOS器件模型
随着CMOS工艺的栅极长度越来越小,器件fT越来越大,CMOS功率放大器等在毫米波区域的应用变得可行和实用。本文介绍了亚100nm CMOS晶体管的经验大信号模型的开发,并演示了其在4级60ghz CMOS功率放大器的设计中的成功应用,该功率放大器的测量性能为20dB增益,+10.3dBm P1dB, 13.5dBm Psat和13% PAE。采用了一种新颖的漏源电流公式,准确地模拟了短通道90nm CMOS晶体管的强反转和亚阈值特性。通过对毫米波应用进行优化,利用优化的寄生提取过程以及尺寸可扩展性和温度依赖性的结合,进一步增强了模型,使该建模方法具有高度鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信