A Numerical Solution for the Coexisting Field of Surface and Internal Solitary Waves

K. Yamashita, T. Kakinuma, K. Nakayama
{"title":"A Numerical Solution for the Coexisting Field of Surface and Internal Solitary Waves","authors":"K. Yamashita, T. Kakinuma, K. Nakayama","doi":"10.2208/KAIGAN.72.I_13","DOIUrl":null,"url":null,"abstract":"The numerical solutions for the coexisting fields of surface and internal solitary waves have been obtained, where the set of nonlinear equations based on the variational principle for steady waves are solved using the Newton- Raphson method. The relative phase velocity of surface-mode solitary waves is smaller in the coexisting fields of surface and internal solitary waves than in the cases without the coexistence of internal waves. The relative phase velocity of internal-mode solitary waves is also smaller in the coexisting fields of surface and internal solitary waves than in the cases without surface waves. The interfacial position of an internal mode internal solitary wave in a coexisting field of surface and internal waves can exceed the critical level determined in the corresponding case without a surface wave. The wave height ratio between internal-mode surface and internal solitary waves is smaller than the corresponding linear shallow water wave solution, and the difference increases, as the relative wave height of internal-mode internal solitary waves is increased.","PeriodicalId":342934,"journal":{"name":"Global Journal of Researches in Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Researches in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2208/KAIGAN.72.I_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical solutions for the coexisting fields of surface and internal solitary waves have been obtained, where the set of nonlinear equations based on the variational principle for steady waves are solved using the Newton- Raphson method. The relative phase velocity of surface-mode solitary waves is smaller in the coexisting fields of surface and internal solitary waves than in the cases without the coexistence of internal waves. The relative phase velocity of internal-mode solitary waves is also smaller in the coexisting fields of surface and internal solitary waves than in the cases without surface waves. The interfacial position of an internal mode internal solitary wave in a coexisting field of surface and internal waves can exceed the critical level determined in the corresponding case without a surface wave. The wave height ratio between internal-mode surface and internal solitary waves is smaller than the corresponding linear shallow water wave solution, and the difference increases, as the relative wave height of internal-mode internal solitary waves is increased.
表面和内孤立波共存场的数值解
得到了表面和内孤立波共存场的数值解,并利用牛顿-拉夫森法求解了基于变分原理的定常波非线性方程组。表面型孤立波与内孤立波共存时的相对相速度比没有内波共存时小。在表面波和内孤立波共存的情况下,内模孤立波的相对相速度也比没有表面波时小。内模内孤立波在表面波和内波共存场中的界面位置可以超过在没有表面波的情况下确定的临界水平。内模态表面波与内孤立波之间的波高比小于相应的线性浅水波解,且随着内模态内孤立波相对波高的增加,两者之间的波高比增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信