Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis

Shigehiko Schamoni, M. Hagmann, S. Riezler
{"title":"Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis","authors":"Shigehiko Schamoni, M. Hagmann, S. Riezler","doi":"10.48550/arXiv.2209.00439","DOIUrl":null,"url":null,"abstract":"Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabling efficient training of patient-specific component neural networks. Second, building on the idea of minimizing generalization error by selecting uncorrelated patient-specific networks, we show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets. Third, the non-iterative ensemble combination step is an optimal low-dimensional entry point to apply output perturbation to guarantee the privacy of the patient-specific networks. We exemplify our framework of differentially private ensembles on the task of early prediction of sepsis, using real-life intensive care unit data labeled by clinical experts.","PeriodicalId":231229,"journal":{"name":"Machine Learning in Health Care","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning in Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.00439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabling efficient training of patient-specific component neural networks. Second, building on the idea of minimizing generalization error by selecting uncorrelated patient-specific networks, we show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets. Third, the non-iterative ensemble combination step is an optimal low-dimensional entry point to apply output perturbation to guarantee the privacy of the patient-specific networks. We exemplify our framework of differentially private ensembles on the task of early prediction of sepsis, using real-life intensive care unit data labeled by clinical experts.
集成神经网络在脓毒症早期诊断中的预测和隐私改进
集成神经网络是一种长期存在的技术,它通过委员会决策将具有正交特性的神经网络组合在一起,以改善神经网络的泛化误差。我们表明,这种技术非常适合医疗数据上的机器学习:首先,集成可以进行并行和异步学习,从而能够有效地训练特定于患者的组件神经网络。其次,基于通过选择不相关的特定患者网络来最小化泛化误差的想法,我们表明可以构建几个特定患者模型的集合,其性能优于在更大的池数据集上训练的单个模型。第三,非迭代集成组合步骤是应用输出摄动来保证特定患者网络隐私的最佳低维入口点。我们举例说明了我们的框架不同的私人集合对脓毒症的早期预测任务,使用临床专家标记的现实生活重症监护病房数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信